DUTH at TREC 2013 Contextual Suggestion Track

George Drosatos
Department of Electrical and Computer Engineering
Democritus University of Thrace
Institute for Language and Speech Processing
Athena Research and Innovation Center

Joint work with: Giorgos Stamatelatos
Avi Arampatzis
Pavlos S. Efraimidis

The present work was partially funded by the project ATLAS (Advanced Tourism Planning), GSRT/CO-OPERATION/11SYN-10-1730.
Summary
Summary of this work

- **Context processing**
 - Collect POIs from Google Places, Foursquare and Yelp
 - The collected POIs are enriched by adding snippets from the Google and Bing search engines using crowdsourcing techniques

- **Suggestion processing methods**
 1. The 1st method submits each candidate place as a query to an index of rated examples and scores it based on the top-k user's ratings
 2. The 2nd method is based on Rocchio's algorithm and uses the rated examples per profile to generate a personal query which is then submitted to an index of places
Overview of Context Processing

Request Places for Contexts → Contexts

- Google Places: Contextual List of Places
- Foursquare: Contextual List of Places
- Yelp: Contextual List of Places

Merging Process Based on URL and Phone → Merged Contextual List of Places

Crowdsourcing to Extract Place URL of Yelp URLs

Pool with Detailed Places per Context → Merging Descriptions

Crowdsourcing

- Google Search Engine
- Bing Search Engine

DUTH at TREC 2013 Contextual Suggestion Track
TREC '13
Collected Data

Table 1: Statistical information about the contextual list of places.

<table>
<thead>
<tr>
<th>Context</th>
<th>Google</th>
<th>Foursquare</th>
<th>Yelp</th>
<th>Merged / Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crestview, FL</td>
<td>103</td>
<td>33</td>
<td>38</td>
<td>131 / 174</td>
</tr>
<tr>
<td>Anniston, AL</td>
<td>139</td>
<td>53</td>
<td>26</td>
<td>168 / 218</td>
</tr>
<tr>
<td>Sumter, SC</td>
<td>147</td>
<td>52</td>
<td>40</td>
<td>173 / 239</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Orlando, FL</td>
<td>590</td>
<td>328</td>
<td>497</td>
<td>1008 / 1415</td>
</tr>
<tr>
<td>Atlanta, GA</td>
<td>694</td>
<td>559</td>
<td>738</td>
<td>1378 / 1991</td>
</tr>
<tr>
<td>Washington, DC</td>
<td>812</td>
<td>1126</td>
<td>1275</td>
<td>2378 / 3213</td>
</tr>
<tr>
<td>Total (with URLs)</td>
<td>14945</td>
<td>7664</td>
<td>8394</td>
<td>22600 / 31003</td>
</tr>
<tr>
<td>Total (retrieved)</td>
<td>—</td>
<td>68517</td>
<td>15787</td>
<td>—</td>
</tr>
</tbody>
</table>
Suggestion Processing
Suggestion Model based on k–NN Classification
(Run DuTH_A)
Suggestion Model Based on a Rocchio-like Method
(Run DuTH_B)

Pool with Detailed Places per Context

Examples

Profiles of Users for Examples

Indexing: Title, Description, Place Types

Index per Context

Retrieve the Results of Query for Every Index

Suggestions per User and Context

Generate Personalized Queries with Rocchio Algorithm

Weighted Query per User

\[Q_u = \sum_{j=0}^{4} \left(j - 2 \right) \frac{1}{|R_{j,u}|} \sum_{D \in R_{j,u}} D \]
Official Results
Table 2: Mean of results over all the profiles and contexts for P@5, MRR and TBG measures.

<table>
<thead>
<tr>
<th>Runs</th>
<th>P@5</th>
<th>MRR</th>
<th>TBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>DuTH_A</td>
<td>0.3283</td>
<td>0.4836</td>
<td>1.3109</td>
</tr>
<tr>
<td>DuTH_B</td>
<td>0.4090</td>
<td>0.5955</td>
<td>1.8508</td>
</tr>
</tbody>
</table>

Difference:

| DuTH_B vs _A | +24.58% | +23.14% | +41.19% |

Table 3: Number of context–profile pairs with Median–or–better and Best scores per measure.

<table>
<thead>
<tr>
<th>Runs</th>
<th>Median-or-better</th>
<th></th>
<th>Best</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P@5</td>
<td>MRR</td>
<td>TBG</td>
</tr>
<tr>
<td>DuTH_A</td>
<td>189</td>
<td>175</td>
<td>151</td>
</tr>
<tr>
<td>DuTH_B</td>
<td>209</td>
<td>206</td>
<td>185</td>
</tr>
</tbody>
</table>
Conclusions
Conclusions

- Both approaches seem very promising
- DuTH_B performed better than DuTH_A
- Compared to other groups
 - DuTH_B scored almost firmly above the median (in P@5 and MRR)
 - DuTH_B achieved the best results in almost half of the judged context–profile pairs (at MRR)

Future work
- Failure analysis
- Further parameterize and tune the Rocchio–like approach
- Apply our suggestion methods in our funded ATLAS (Advanced Tourism PLAnning System) Project
Thank you, any questions?