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Abstract

The advances in information and communication technologies (ICT)
and the wide acceptance of electronic transactions for everyday tasks
of individuals have a strong impact on the use and protection of per-
sonal information. Desktop and mobile computing technology, the
World Wide Web, sensors, and the advances in database and storage
technologies have increased the amount of personal information that is
generated and the potential for this information to be (permanently)
stored and processed. Any kind of personal information that results
as an outcome of electronic activities of individuals, either personal or
professional, belongs to the category of personal data. Personal data
is a critical and valuable resource that has to be protected in order to
ensure the individual’s privacy rights.
In this dissertation we investigate how this personal data can be man-
aged at the user side and simultaneously can be used in privacy-
preserving applications without violating individuals’ privacy. Each
individual has the right to protect his privacy by retaining control over
his personal data and knowing who, when and why gets access to his
data. At the same time, individuals, as well as the society as a whole,
may obtain significant benefits if personal data can be used legiti-
mately for beneficial purposes. We propose an approach for privacy-
preserving computations and apply this approach to representative
applications. These applications make use of cryptographic primitives
and are based on secure multi-party computations (MPC’s). Every
privacy-preserving application is implemented by a prototype and ex-
perimental results are presented to illustrate the feasibility of our
approach.
Apart from the management and usage of personal data we investigate
how the web searches of individuals can be protected against search
engine query-logs and simultaneously the target search results can
be retrieved, without submitting the intended query. We model the
problem theoretically, define a set of privacy objectives with respect to
web search and investigate the effectiveness of the proposed solution
with a set of real queries on a large web collection.
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Extended Abstract in Greek (Περίληψη)

Η πρόοδος σε τεχνολογίες πληροφοριών και επικοινωνιών έχει οδηγήσει
στην παραγωγή προσωπικών πληροφοριών και παρέχει τεράστιες δυνα-
τότητες σε αναδυόμενες νέες εφαρμογές που μπορούν να χρησιμοποιήσουν
τα προσωπικά δεδομένα προς όφελος των ατόμων. Μερικά παραδείγ-
ματα, είναι εξατομικευμένες διαδικτυακές υπηρεσίες που προσαρμόζονται
αυτόματα στο προφίλ του ατόμου και location-based υπηρεσίες που συμ-
περιφέρονται σύμφωνα με τη τρέχουσα τοποθεσία του ατόμου. Ωστόσο,
η χρήση των προσωπικών δεδομένων πρέπει να γίνεται με τρόπο που να
εξασφαλίζει ταυτόχρονα την προστασία τους. Για την προστασία των
προσωπικών δεδομένων, πολλοί οργανισμοί και χώρες έχουν εκδώσει
κανονισμούς ιδιωτικότητας, οι οποίοι θα πρέπει να ακολουθούνται προ-
κειμένου να διασφαλιστεί η προστασία των προσωπικών πληροφοριών.
Συλλογικά αυτοί οι κανονισμοί αναφέρονται ως Fair Information Practices
(FIP). Μερικά σημαντικά παραδείγματα τέτοιων FIP κανονισμών είναι το
Data Protection Directive 95/46/EC και ακολουθούν κάποιοι άλλοι, όπως
η καναδική PIPEDA και το Data Protection Act (DPA) του Ηνωμένου Βα-
σιλείου. Με βάση τις διατάξεις περί απορρήτου, το κάθε άτομο έχει το
δικαίωμα προστασίας της ιδιωτικότητας του, διατηρώντας τον έλεγχο
πάνω στα προσωπικά του δεδομένα και να γνωρίζει ποιος, πότε και
γιατί αποκτά πρόσβαση στα δεδομένα του. Επιπλέον, όταν ένα άτομο
κάνει μια συναλλαγή, μόνο η ελάχιστη δυνατή ποσότητα προσωπικών
πληροφοριών που απαιτούνται θα πρέπει να αποκαλύπτεται. Δηλαδή, η
αποκάλυψη των προσωπικών δεδομένων θα πρέπει να γίνεται με τέτοιο
τρόπο ώστε μόνο τα απολύτως απαραίτητα στοιχεία να αποκαλύπτον-
ται και μόνο όταν πραγματικά χρειάζονται. Επιπλέον, η αποκάλυψη θα
πρέπει να γίνεται με σαφείς όρους σχετικά με το πώς τα προσωπικά
δεδομένα θα χρησιμοποιηθούν. Για το σκοπό αυτό, προτείνεται η αρχι-
τεκτονική Polis που έχει την δυνατότητα να διαχειρίζεται τα προσωπικά
δεδομένα ενός ατόμου και να παρέχει ελεγχόμενη πρόσβαση σε αυτές
τις πληροφορίες σε τρίτους.

Μια πολύ ενδιαφέρουσα κατηγορία προσωπικών δεδομένων είναι τα δυ-
ναμικά προσωπικά δεδομένα, όπως η τρέχουσα θέση ενός ατόμου. Η
πρόσφατη πρόοδος στην τεχνολογία των κινητών συσκευών και γενικό-
τερα σε περιβάλλοντα Ubiquitous Computing επιτρέπει στους χρήστες να
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συλλέγουν και να επεξεργάζονται τέτοια δυναμικά προσωπικά δεδομένα.
Αυτό ανοίγει το δρόμο για μια νέα κατηγορία σημαντικών εφαρμογών.
Για το σκοπό αυτό, προτείνονται τέσσερις νέες εφαρμογές που διασφαλί-
ζουν την ιδιωτικότητα και ταυτόχρονα χρησιμοποιούν δυναμικά προσω-
πικά δεδομένα για την παροχή χρήσιμων υπηρεσιών για τη κοινωνία.
Πιο συγκεκριμένα, προτείνεται μια λύση ενισχυμένης ιδιωτικότητας στο
πρόβλημα εύρεσης του πλησιέστερου γιατρού, μια αρχιτεκτονική για τη
στατιστική ανάλυση ubiquitous ιατρικών δεδομένων παρακολούθησης, ένα
σύστημα δημιουργίας περιβαλλοντικών χαρτών θορύβου από εθελοντές
που αποστέλλουν τα δεδομένα τους στο cloud και μια νέα αρχιτεκτονική
υπολογισμού των τηλεθεάσεων διασφαλίζοντας την ιδιωτικότητα των
τηλεθεατών. Περισσότερες λεπτομέρειες σχετικά με αυτές τις εφαρμογές
δίνονται στις περιγραφές των κεφαλαίων που ακολουθούν. Οι προτεινό-
μενες εφαρμογές αποδεικνύουν ότι είναι εφικτή η χρήση και ταυτόχρονα
η προστασία των προσωπικών δεδομένων των ατόμων.

Το διαδίκτυο έχει γίνει σταδιακά η κύρια πηγή πληροφοριών για πολ-
λούς ανθρώπους. Τις περισσότερες φορές, οι χρήστες υποβάλλουν ερω-
τήματα σε μηχανές αναζήτησης για να εντοπίσουν αυτό που αναζητούν.
Οι αναζητήσεις αυτές είναι ένας εξαιρετικά σημαντικός μηχανισμός που
λαμβάνει χώρα τόσο στους καθημερινούς κλασικούς υπολογιστές όσο
και στην πλειοψηφία των σύγχρονων φορητών συσκευών. Λαμβάνοντας
υπόψη το διαδίκτυο ως μια τεράστια βιβλιοθήκη, η διαδικτυακή αναζή-
τηση αντιστοιχεί σε μια αναζήτηση μέσα σε αυτήν τη βιβλιοθήκη. Ενώ
τα συμβατικά αρχεία μιας βιβλιοθήκης είναι ιδιωτικά με βάση τη νομοθε-
σία, τουλάχιστον στις ΗΠΑ, οι χρήστες του διαδικτύου θα μπορούσε να
εκτεθούν από τις αναζητήσεις τους. Κάθε φορά που ένας χρήστης υπο-
βάλλει ένα ερώτημα σε μια μηχανή αναζήτησης στο διαδίκτυο, κάποιες
προσωπικές πληροφορίες για το χρήστη και τα ενδιαφέροντά του θα
μπορούσε να διαρρέουν μαζί με το ερώτημα. Το ερώτημα αντιπροσω-
πεύει τα ενδιαφέροντα ενός χρήστη και επομένως ανήκει στην κατηγορία
των προσωπικών δεδομένων. Παρόλα αυτά, μπορεί να αποθηκεύεται στα
logs της μηχανής αναζήτησης, μπορεί να υποκλαπεί από τον πάροχο δια-
δικτύου ή ακόμη και από οποιοδήποτε άλλο κόμβο στη διαδρομή μέσα
από το δίκτυο. Για την προστασία της ιδιωτικής ζωής των χρηστών από
τις μηχανές αναζήτησης προτείνονται δύο μέθοδοι που αντικαθιστούν το
ιδιωτικό ερώτημα του χρήστη με ένα σύνολο από blurred (θολωμένα) ή
scrambled (ανακατεμένα) ερωτήματα και στόχος είναι να προσεγγιστούν
τα αρχικά αποτελέσματα της αναζήτησης που θα είχαμε κανονικά. Η
μία μεθοδολογία χρησιμοποιεί σημασιολογικά scrambled ερωτήματα και η
άλλη χρησιμοποιεί στατιστικά scrambled ερωτήματα. Ο στόχος και των
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δύο μεθόδων είναι η προστασία των ιδιωτικών ερωτημάτων και των
ενδιαφερόντων του χρήστη.

Εδώ συνοψίζονται τα περιεχόμενα των κεφαλαίων της διατριβής:

Κεφάλαιο 2: Background

Σε αυτό το κεφάλαιο, παρέχεται το απαραίτητο υπόβαθρο για τη κατα-
νόηση των βασικών εννοιών που χρησιμοποιούνται σε αυτή τη διατριβή.
Πιο αναλυτικά, περιγράφονται έννοιες που αφορούν την ιδιωτικότητα, την
ασφάλεια και την κρυπτογραφία.

Κεφάλαιο 3: Polis Framework

Προκειμένου να ενισχυθεί η προστασία της ιδιωτικότητας κατά τις ηλε-
κτρονικές συναλλαγές, προτείνεται, αναπτύσσεται και αξιολογείται μια
αρχιτεκτονική διαχείρισης προσωπικών δεδομένων που ονομάζεται Polis.
Αυτή η Polis αρχιτεκτονική είναι σύμφωνη με την ακόλουθη αρχή: Κάθε
άτομο έχει τον απόλυτο έλεγχο των προσωπικών του δεδομένων, τα
οποία βρίσκονται μόνο στη δική του πλευρά. Η νέα αυτή προσέγγιση
μπορεί να είναι προς όφελος τόσο των ίδιων των ατόμων όσο και των
επιχειρήσεων. Επιπλέον, έχουν εντοπιστεί αντιπροσωπευτικές ηλεκτρο-
νικές συναλλαγές που αφορούν δεδομένα προσωπικού χαρακτήρα και
προτείνονται πρωτόκολλα που βασίζονται στο Polis για την πραγμα-
τοποίηση αυτών των συναλλαγών. Η προσέγγιση αξιολογείται με ένα
Polis πρωτότυπο τόσο ως μια απλή εφαρμογή όσο και ως μέρος ενός
εμπορικού συστήματος διαχείρισης βάσεων δεδομένων. Στα πλαίσια της
διατριβής αυτής μελετήθηκαν και αναπτύχθηκαν η διαχείριση των δη-
μοσίων κλειδιών των χρηστών, οι πολικές ασφαλείας (policies) για τις
συναλλαγές προσωπικών δεδομένων, η αλληλεπίδραση της Polis αρχι-
τεκτονικής με τα υπάρχοντα συστήματα διαχείρισης βάσεων δεδομένων
και η υποστήριξη πρωτοκόλλων για την πραγματοποίηση υπολογισμών.
Τα αποτελέσματα αυτής της δουλειάς δείχνουν ότι οι ηλεκτρονικές συ-
ναλλαγές μπορούν να παραμείνουν εφικτές και απλές, παραμένοντας τα
προσωπικά δεδομένα μόνο στην πλευρά του ιδιοκτήτη τους.

Κεφάλαιο 4: Privacy-Preserving Solution for Finding the Nearest Doctor

Σε αυτό το κεφάλαιο, ορίζεται το Nearest Doctor Problem (NDP) για την
εξεύρεση του πλησιέστερου γιατρού σε μία περίπτωση έκτακτης ανάγκης
και παρουσιάζεται ένα πρωτόκολλο διασφάλισης της ιδιωτικότητας για
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την επίλυσή του. Η προτεινόμενη λύση βασίζεται στη χρήση κρυπτογρα-
φικών εργαλείων και λαμβάνωντας υπόψιν τη τρέχουσα θέση του κάθε
συμμετέχοντος γιατρού. Το πρωτόκολλο είναι αποδοτικό και προστα-
τεύει το απόρρητο των θέσεων των ιατρών. Επιπλέον, παρουσιάζεται
μια πρότυπη εφαρμογή που υλοποιεί την προτεινόμενη λύση για μια κοι-
νότητα γιατρών που χρησιμοποιούν τις φορητές τους συσκευές με σκοπό
να εντοπίσουν τη τρέχουσα θέση τους. Αυτή η πρότυπη εφαρμογή δο-
κιμάστηκε πειραματικά σε κοινότητες που τις αποτελούσαν εκατοντάδες
agents εικονικών γιατρών.

Κεφάλαιο 5: Privacy-Preserving Management and Statistical Analysis of Ubiq-
uitous Health Monitoring Data

Στο κεφάλαιο αυτό, προτείνεται μια αρχιτεκτονική επικεντρωμένη στο
χρήστη για τη διαχείριση ubiquitous ιατρικών δεδομένων παρακολού-
θησης (UHMD) που παράγονται από wearable αισθητήρες σε ubiquitous
ιατρικά συστήματα παρακολούθησης (UHMS), και εξετάζεται πώς αυτά
τα δεδομένα μπορούν να χρησιμοποιηθούν για την πραγματοποίηση κα-
τανεμημένης στατιστικής ανάλυσης ενισχυμένης ιδιωτικότητας. Ο σκοπός
αυτής της προσέγγισής είναι να ενισχυθεί η ιδιωτικότητα των ασθε-
νών και την ίδια στιγμή να αποσυμφορηθεί το Κέντρο Παρακολούθησης
Υγείας (HMC) από το τεράστιο όγκο των βιοϊατρικών δεδομένων που
παράγονται από τους wearable αισθητήρες των χρηστών. Στη προτει-
νόμενη λύση γίνεται χρήση προσωπικών agents που χρησιμοποιούνται
για να λαμβάνουν και να διαχειρίζονται τα προσωπικά ιατρικά δεδομένα
των ιδιοκτητών τους. Επιπλέον, οι προσωπικοί agents μπορούν να υπο-
στηρίξουν κατανεμημένη στατιστική ανάλυση ενισχυμένης ιδιωτικότητας
πάνω σε αυτά τα δεδομένα υγείας. Για το σκοπό αυτό, παρουσιάζεται
ένα κρυπτογραφικό πρωτόκολλο που βασίζεται σε ασφαλείς υπολογι-
σμούς (MPC) και δέχεται ως είσοδο τρέχουσες ή αρχειοθετημένες τιμές
από τους wearable αισθητήρες των χρηστών. Επιπλέον, περιγράφεται
μια πρότυπη υλοποίηση που εκτελεί στατιστική ανάλυση ενισχυμένης
ιδιωτικότητας σε μια κοινότητα ανεξάρτητων προσωπικών agents και
παρουσιάζονται πειραματικά αποτελέσματα από αρκετές εκατοντάδες
agents που επιβεβαιώνουν τη βιωσιμότητα και την αποτελεσματικότητα
της προσέγγισής.

Κεφάλαιο 6: Privacy-Preserving Computation of Participatory Noise Maps in
the Cloud

Το κεφάλαιο αυτό παρουσιάζει ένα σύστημα ενισχυμένης ιδιωτικότητας
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για participatory sensing, το οποίο βασίζεται σε κρυπτογραφικές τεχνικές
και κατανεμημένους υπολογισμούς στο cloud. Κάθε μεμονωμένος χρήστης
αντιπροσωπεύεται από έναν προσωπικό agent που βρίσκεται στο cloud
και συμμετέχει σε κατανεμημένους υπολογισμούς χωρίς να παραβιάζε-
ται η ιδιωτικότητα ακόμη και από τους cloud παρόχους. Παρουσιάζεται
μια γενική αρχιτεκτονική που περιλαμβάνει ένα κρυπτογραφικό πρωτό-
κολλο το οποίο βασίζεται στην ομομορφική κρυπτογράφηση των συγ-
κεντρωτικών δεδομένων των χαρτών, και η ασφάλεια του στηρίζεται στο
Honest-But-Curious μοντέλο τόσο για τους χρήστες όσο και για τους cloud
παρόχους. Η προσέγγιση αυτή επιβεβαιώνεται χρησιμοποιώντας δεδο-
μένα από το NoiseTube Project και παρουσιάζονται πειραματικά αποτε-
λέσματα με πραγματικά και τεχνητά δεδομένα. Επιπλέον, παρουσιάζεται
και ένα online demo που κάνει χρήση διαφόρων εμπορικών cloud παρό-
χων. Η προτεινόμενη αρχιτεκτονική είναι η πρώτη πρακτική εφαρμογή
με ενισχυμένη ιδιωτικότητα στο χώρο του participatory sensing. Εάν και η
προτεινόμενη λύση αφορά την δημιουργία χαρτών θορύβου, η προσέγ-
γιση αυτή μπορεί να είναι εφαρμόσιμη σε οποιαδήποτε crowd-sourcing
εφαρμογή που στηρίζεται στη γεωγραφική θέση των πολιτών, όπου οι
χάρτες παράγονται με βάση συγκεντρωτικά δεδομένα και ανήκουν στην
ερευνητική περιοχή της παρακολούθησης του περιβάλλοντος.

Κεφάλαιο 7: Privacy-Preserving Television Audience Measurement using
Smart TVs

Τα συστήματα τηλεόρασης με σύνδεση στο διαδίκτυο, που συχνά ανα-
φέρονται ως Smart TVs, είναι μια εξέλιξη της τηλεόρασης και των τε-
χνολογιών ψυχαγωγίας στο σπίτι. Σε αυτό το κεφάλαιο, προτείνεται
μια νέα προσέγγιση για τη μέτρηση των τηλεθεάσεων (TAM) που σέ-
βεται την ιδιωτικότητα, αξιοποιώντας τις δυνατότητες των Smart TV
τεχνολογιών. Η νέα αυτή προτεινόμενη εφαρμογή για τον υπολογισμό
των συνολικών μετρήσεων τηλεθέασης χρησιμοποιεί τις υπολογιστικές
δυνατότητες των Smart TVs και τη μόνιμη πρόσβαση στο διαδίκτυο.
Οι κρυπτογραφικές τεχνικές, συμπεριλαμβανομένων της ομομορφικής κρυ-
πτογράφησης και των αποδείξεων μηδενικής γνώσης, χρησιμοποιούνται
για να εξασφαλιστεί τόσο η προστασία της ιδιωτικότητας των συμμετε-
χόντων ατόμων όσο και η εγκυρότητα των αποτελεσμάτων. Επιπλέον,
στους συμμετέχοντες δίνεται η δυνατότητα να αποζημιωθούν για τα τη-
λεοπτικά δεδομένα που έδωσαν. Τέλος, τα πειραματικά αποτελέσματα
σε Android-based Smart TVs έδειξαν τη βιωσιμότητα της προσέγγισης.
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Κεφάλαιο 8: Semantic Query Scrambling for Search Privacy on the Internet

Σε αυτό το κεφάλαιο προτείνεται μια μέθοδο για την προστασία της
ιδιωτικότητας των αναζητήσεων στο διαδίκτυο, με έμφαση στην ενί-
σχυση της εύλογης δυνατότητας άρνησης (plausible deniability) έναντι στα
logs των ερωτημάτων των μηχανών αναζήτησης. Στόχος της μεθόδου
είναι η προσέγγιση των αποτελεσμάτων αναζήτησης, χωρίς να υπο-
βάλεται το πραγματικό ερώτημα και αποφεύγοντας άλλα ερωτήματα
που μπορεί εκθέτουν αναλόγως το χρήστη. Αυτό επιτυγχάνεται χρησι-
μοποιώντας ένα σύνολο ερωτημάτων που αντιπροσωπεύουν γενικότερες
έννοιες από το πραγματικό ερώτημα. Πιο συγκεκριμένα, μοντελοποιείται
το πρόβλημα θεωρητικά, και διερευνείται η πρακτική σκοπιμότητα και
αποτελεσματικότητα της προτεινόμενης λύσης με μια σειρά από πραγ-
ματικά ερωτήματα, που έχουν θέματα ιδιωτικότητας, σε μια μεγάλη web
συλλογή. Τα αποτελέσματα που παρουσιάζονται μπορεί να έχουν εφαρ-
μογή και σε άλλους τομείς έρευνας της ανάκτησης πληροφοριών, όπως η
επέκταση ερωτήματος (query expansion) και το fusion της μετα-αναζήτησης
(meta-search). Τέλος, συζητούνται ιδέες για την ιδιωτικότητα, όπως το k-
anonymity, και πώς αυτές μπορούν να εφαρμοστούν στη χρήση μηχανών
αναζήτησης.

Κεφάλαιο 9: Statistical Query Scrambling for Privacy-Enhanced Web Search

Λαμβάνοντας υπόψη το πρόβλημα παραβίασης της ιδιωτικότητας που
υπόκεινται οι χρήστες του διαδικτύου όταν πραγματοποιούν web αναζη-
τήσεις, προτείνεται ένα framework για το μετριασμό αυτό του σημαντικού
προβλήματος. Η προτεινόμενη προσέγγισή, η οποία βασίζεται και βελ-
τιώνει την προηγούμενη προτεινόμενη λύση (αυτή που περιγράφεται
στο Κεφάλαιο 8), έχει στόχο να πλησιάσει τα αποτελέσματα αναζήτη-
σης αντικαθιστώντας το ιδιωτικό ερώτημα του χρήστη με ένα σύνολο
θολωμένων (blurred) ή ανακατεμένων (scrambled) ερωτημάτων. Τα αποτε-
λέσματα των ανακατεμένων ερωτημάτων (scrambled queries) στη συνέχεια
χρησιμοποιούνται για να καλύψουν το αρχικό ενδιαφέρον του χρήστη.
Πιο συγκεκριμένα, μοντελοποιείται το πρόβλημα θεωρητικά, ορίζονται
μετρικές ιδιωτικότητας όσον αφορά την αναζήτηση στο διαδίκτυο και
διερευνείται η αποτελεσματικότητα της προτεινόμενης λύσης με μια σειρά
πραγματικών ερωτημάτων σε μια μεγάλη web συλλογή. Τα πειράματα
δείχνουν σημαντικές βελτιώσεις στην αποτελεσματικότητα της ανάκτησης
σε σύγκριση με τα προηγούμενα αποτελέσματα. Επιπλέον, η νέα μέθοδος
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είναι πιο ευέλικτη, έχει προβλέψιμη πλέον συμπεριφορά, μπορεί να είναι
εφαρμόσιμη σε ένα ευρύτερο φάσμα των αναγκών πληροφόρησης, καθώς
και η προστασία της ιδιωτικότητας που παρέχει είναι πιο κατανοητή
για στον τελικό χρήστη.

Κεφάλαιο 10: Conclusion

Για την ολοκλήρωση της διατριβής το κεφάλαιο αυτό περιέχει τις κύ-
ριες συνεισφορές της δουλειάς αυτής και παρέχει μια επισκόπηση των εν
εξελίξει και μελλοντικών εργασιών. Πιο αναλυτικά, σε αυτή τη διατριβή,
προτάθηκε τη χρήση ubiquitous προσωπικών δεδομένων από αισθητήρες,
φορητές συσκευές ή άλλες πηγές με σκοπό την δημιουργία χρήσιμων
υπηρεσιών/εφαρμογών για την κοινωνία. Οι προτεινόμενες εφαρμογές
χρησιμοποιούν τα προσωπικά δεδομένα των χρηστών, διασφαλίζοντας
παράλληλα την ιδιωτικότητας τους. Η προστασία της ιδιωτικότητας επι-
τυγχάνεται με τη χρήση κρυπτογραφικών τεχνικών και πρωτοκόλλων
που εκτελούν υπολογισμούς ενισχυμένης ιδιωτικότητας σε κοινότητες από
προσωπικούς agents. Επιπρόσθετα, με την υλοποίηση αυτών των εφαρμο-
γών αποδείχθηκε ότι είναι εφικτή η χρήση και ταυτόχρονα η προστασία
των προσωπικών δεδομένων των ατόμων, και μάλιστα με αποδοτικό
τρόπο. Τέλος, παρουσιάστηκαν και μέθοδοι για την προστασία των
αναζητήσεων στο διαδίκτυο από τα logs των μηχανών αναζήτησης. Η
σημαντικότητα της προστασίας αυτών των αναζητήσεων γιγαντώνεται
όταν μάλιστα αυτές γίνονται από φορητές συσκευές που πιθανών κάνουν
χρήση επιπρόσθετων πληροφοριών.
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Chapter 1

Introduction

1.1 Research Context
The advances in ICT that cause the generation of personal information, pro-

vide a vast potential for emerging new applications that can use personal data
in favor of the individuals’ interests. Some examples are personalized web ser-
vices that automatically adapt to the profile of an individual, and location-based
services that behave according to the individual’s current location or context.
However, the use of personal data should be done in a way that simultaneously
ensures their protection. In order to protect personal information, several organi-
zations and countries have issued privacy regulations, which should be followed
in order for personal information to be protected; the collectively referred to as
Fair Information Practices (FIP). Examples of important FIP regulation frame-
works are the Data Protection Directive 95/46/EC (henceforth referred to as The
Directive) and follow-ups like the Canadian PIPEDA and UK’s Data Protection
Act (DPA). Based on the privacy regulations, each individual has the right to
protect his privacy by retaining the control over his personal data and knowing
who, when and why gets access to his data. Furthermore, when an individual
makes a transaction, only the minimum possible amount of personal information
that is needed to complete it should be disclosed. That is, release of personal
data should be done in such a way that only the absolutely necessary items are
disclosed and only when it is really needed. Moreover, the disclosure should take
place with clear terms on how the personal data will be used. To this end, we
propose the Polis framework that has the ability to manage the personal infor-
mation of an individual and to provide controlled access to this information from
other parties.

A very interesting class of personal data is dynamic personal data, such as
the current location of an individual. The recent progress in mobile device tech-
nology and the advances in ubiquitous computing allow individuals to collect and
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process such dynamic personal data. This enables a new class of important ap-
plications. To this end, we propose four privacy-preserving applications that use
dynamic personal data and provide useful services for the society. More specifi-
cally, we propose a privacy-preserving solution for finding the nearest doctor, a
platform for statistical analysis of ubiquitous health monitoring data, a privacy-
preserving cloud computing system for creating participatory noise maps and a
privacy-preserving television audience measurement. More details about these ap-
plications you can find in the specific chapters of this dissertation. The proposed
privacy-preserving applications prove that it is feasible to use and simultaneously
protect the personal data of individuals.

The Internet has gradually become the primary source of information for
many people. More often than not, users submit queries to search engines in
order to locate content. The searches are an exceptionally important mechanism
that takes place both in everyday classical computers and to the majority of
modern mobile devices. Considering the Internet as a huge library, web-search
corresponds to a search within this library. While conventional library records are
private under law, at least in the U.S., Internet users might be exposed by their
searches. Every time a user submits a query to a web search engine, some private
information about the user and his interests might be leaked with the query. The
query representing the interest will be saved in the engine’s session-logs, or it may
be intercepted by the Internet provider or any other node in the network path. To
protect the users’ privacy from the search engines we propose two methodologies
that replace the private user query with a set of blurred or scrambled queries and
approximate the target search results. The one methodology is based on semantic
query scrambling and the other is based on statistical query scrambling. The goal
of both methodologies is to protect the private query and the interests of user.

1.2 Motivation
Desktop, mobile computing, sensing technology and generally ubiquitous com-

puting have greatly increased the amount of personal information that is gener-
ated, while recent advances of database technology enable the potential for this
information to be (permanently) stored and processed. To give an indication on
the volume of personal data, a case in point is that of Max Schrems, in September
2012. The 24-year-old Schrems asked Facebook for a copy of all the data the social
network has on file for him and he got back a CD with 1,222 PDF files document-
ing his every move1. Furthermore, incidents of intentional or unintentional data
breaches are unfortunately quite common and a reasonable worry is that a lot

1http://threatpost.com/twenty-something-asks-facebook-his-file-and-gets-
it-all-1200-pages-121311
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of them never reach the attention of the media. Some representative examples of
such situations are the Choicepoint case, a data broker who sold private records
of over 150,000 Americans to a group of criminals in 2005 [44], the incident that
took place in the UK, where two computer discs containing the personal data of
25 million citizens were lost in the post [10], as well as the Deutsche Telecom in-
cidents [171]. In September 2006, AOL released a collection with search query-log
data containing about 21 million web queries collected from about 650 thousand
users over three months [158]. To protect user privacy, each real IP address had
been replaced with a random ID number. Soon after the release, the first ‘anony-
mous’ user had been identified from the log data. In particular, the user given
the ID 4417749 in AOL’s query-log was identified as the 62-old Thelma [19]. All
these cases indicate that the personal data is a critical, valuable resource that
has to be protected in order to ensure the individual’s privacy.

At the same time, this personal data enables a new class of important applica-
tions. Consider, for example, the location of an expert, and in particular a doctor.
In case of an emergency, the distance of the closest doctor could be live-saving
information. In August 2007, in the area of Alexandroupolis, Greece, a 17-year old
boy was seriously injured in his right leg. Vascular surgery was urgently needed.
However, due to several administrative faults no specialized doctor was available.
Even worse, it took a long time until it became clear that no specialized doctor
could be found and only then the boy was transported to a hospital in Thessa-
loniki. Unfortunately, due to the long delay the injured leg had to be amputated.
Even with the transport taking place, had the initial delay to find out where the
nearest specialized doctor is been avoided, the consequences on the boy’s health
might have been less serious [194]. Another example is the use of statistical meth-
ods in medical research. A medical statistic may comprise a wide variety of data
types, the most common of which are based on vital records, morbidity and mor-
tality. Additional personal data items may needed for other well-known statistical
computations like the demographic distribution of a disease based on geographic,
ethnic and gender criteria. Another interesting example comes from the area of
participatory sensing. Participatory sensing [31, 159] appropriates everyday de-
vices such as mobile phones to acquire information about the physical world (and
the people in it) at a level of granularity which is very hard to achieve otherwise.
A crucial component of participatory sensing systems is geolocation, i.e., labeling
data with geographic coordinates. This is particularly important in the context
of NoiseTube [136, 188], a participatory sensing system and service1 designed to
monitor and map noise pollution. Indeed, it would be practically impossible to
produce noise maps on the basis of sound level measurements, gathered quasi-
continuously as contributors walk the streets, without automatic geolocation of

1http://www.noisetube.net
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measurements by means of GPS. All these examples indicate that the usage of
personal data is extremely important and opens a new category of innovative
applications.

1.3 Methodology
The advances in mobile devices and network infrastructures, and in the same

time the wide acceptance of these technologies for everyday tasks of individuals
have increased the amount of personal information that is generated and have
leaded to a new wide range of applications. Additionally, the advances in cryp-
tographic algorithms and protocols have enabled the utilization and concurrently
the protection of personal data. The goal of this dissertation is to exploit these
advances and to propose new innovative applications that protect the individ-
ual’s privacy and utilize his personal data. The methodology that was followed
to achieve this goal is as follows:

• Following the Polis principle: keep data at the user’s side.

• Detection and selection of the problem.

• Identification of critical personal data for protection and usage.

• Designing of the appropriate computation (distributed or not).

• Developing new cryptographic protocols or adapting existing protocols for
the computational problem.

• Theoretical analysis of the proposed solution.

• Prototype implementation and experimental validation of the effectiveness
of solution.

1.4 Results
We showed that the personal data can be protected and can concurrently be

utilized successfully and efficiently for important innovative applications:

1. NDP: Privacy-preserving solution for finding the nearest doctor

• Personal Data: Geographical location of doctors.
• Usage: Health emergency.
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2. PrivStat: Privacy-preserving statistical analysis on ubiquitous health mon-
itoring data

• Personal Data: Health data of patients.
• Usage: Statistical analysis in medical research.

3. NoiseTubePrime: Privacy-preserving computation of participatory noise maps
in the cloud

• Personal Data: Geolocated, timestamped sound level measurements
of volunteers.

• Usage: Participatory noise map.

4. PrivTAM: Privacy-preserving television audience measurement using smart
TVs

• Personal Data: Viewing records of participants.
• Usage: Television audience measurement.

5. Query Scrambler: Privacy-enhanced web search

• Personal Data: Search queries of users.
• Usage: Web search.

1.5 Structure of the Dissertation
Here we summarize each subsequent chapter of the dissertation:

Chapter 2: Background
In this chapter, we provide background to understand key concepts in this

dissertation. Readers familiar with the concepts in privacy, security and cryptog-
raphy may skip this chapter.

Chapter 3: Polis Framework
In order to enhance privacy protection during electronic transactions, we pro-

pose, develop and evaluate a personal data management framework called Po-
lis [77, 76], which abides by the following principle: Every individual has absolute
control over his personal data, which reside only at his own side. This framework
admits individuals to have their personal data stored only at their own side. The
new approach can be of mutual benefit to both individuals and companies. Fur-
thermore, we identify representative electronic transactions that involve personal
data and proposes Polis-based protocols for them. The approach is evaluated on
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a Polis prototype both as a stand-alone application and as part of a commercial
database management system. The results of this work indicate that electronic
transactions can remain both feasible and straightforward, while personal data
remain only at the owner’s side.

Chapter 4: Privacy-Preserving Solution for Finding the Nearest Doctor

In this chapter, we define the Nearest Doctor Problem [62, 67] (NDP) for find-
ing the nearest doctor in case of an emergency and present a privacy-preserving
protocol for solving it. The solution is based on cryptographic primitives and
makes use of the current location of each participating doctor. The protocol is
efficient and protects the privacy of the doctors’ locations. A prototype imple-
menting the proposed solution for a community of doctors that use mobile devices
to obtain their current location is presented. The prototype is evaluated on ex-
perimental communities with up to several hundred doctor agents.

Chapter 5: Privacy-Preserving Management and Statistical Analysis
of Ubiquitous Health Monitoring Data

In this chapter, we propose a user-centric architecture [60] for managing Ubiq-
uitous Health Monitoring Data (UHMD) generated from wearable sensors in a
Ubiquitous Health Monitoring System (UHMS), and examine how these data can
be used within privacy-preserving distributed statistical analysis [63, 61]. The pur-
pose of our approach is to enhance the privacy of patients and at the same time
to decongest the Health Monitoring Center (HMC) from the enormous amount of
biomedical data generated by the users’ wearable sensors. In our solution personal
software agents are used to receive and manage the personal medical data of their
owners. Moreover, the personal agents can support privacy-preserving distributed
statistical analysis of the health data. To this end, we present a privacy-preserving
cryptographic protocol based on secure multi-party computations that accept as
input current or archived values of users’ wearable sensors. We describe a proto-
type implementation that performs a privacy-preserving statistical analysis on a
community of independent personal agents and present experimental results with
up to several hundred agents that confirm the viability and the effectiveness of
our approach.

Chapter 6: Privacy-Preserving Computation of Participatory Noise
Maps in the Cloud

This chapter presents a privacy-preserving system for participatory sensing [65,
64], which relies on cryptographic techniques and distributed computations in the
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cloud. Each individual user is represented by a personal software agent, deployed
in the cloud, where it collaborates on distributed computations without loss of pri-
vacy, including with respect to the cloud service providers. We present a generic
system architecture involving a cryptographic protocol based on a homomorphic
encryption scheme for aggregating sensing data into maps, and demonstrate se-
curity in the Honest-But-Curious model both for the users and the cloud service
providers. We validate our system in the context of NoiseTube, a participatory
sensing framework for noise pollution, presenting experiments with real and artifi-
cially generated data sets, and a demo on a heterogeneous set of commercial cloud
providers. To the best of our knowledge our system is the first operational privacy-
preserving system for participatory sensing. While our validation pertains to the
noise domain, the approach used is applicable in any crowd-sourcing application
relying on location-based contributions of citizens where maps are produced by
aggregating data – also beyond the domain of environmental monitoring.

Chapter 7: Privacy-Preserving Television Audience Measurement using
Smart TVs

Internet-enabled television systems, often referred to as Smart TVs, are a
new development in television and home entertainment technologies. In this
chapter, we propose a new, privacy-preserving, approach for Television Audi-
ence Measurement [66] (TAM), utilizing the capabilities of the Smart TV tech-
nologies. We propose a novel application to calculate aggregate audience mea-
surements using Smart TV computation capabilities and permanent Internet
access. Cryptographic techniques, including homomorphic encryption and zero-
knowledge proofs, are used to ensure both that the privacy of the participating
individuals is preserved and that the computed results are valid. Additionally,
participants can be compensated for sharing their information. Preliminary ex-
perimental results on an Android-based Smart TV platform show the viability of
the approach.

Chapter 8: Semantic Query Scrambling for Search Privacy on the In-
ternet

We propose a method for search privacy on the Internet [13, 12], focusing
on enhancing plausible deniability against search engine query-logs. The method
approximates the target search results, without submitting the intended query
and avoiding other exposing queries, by employing sets of queries representing
more general concepts. We model the problem theoretically, and investigate the
practical feasibility and effectiveness of the proposed solution with a set of real
queries with privacy issues on a large web collection. The findings may have
implications for other IR research areas, such as query expansion and fusion in
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meta-search. Finally, we discuss ideas for privacy, such as k-anonymity, and how
these may be applied to search tasks.

Chapter 9: Statistical Query Scrambling for Privacy-Enhanced Web
Search

We consider the problem of privacy leaks suffered by Internet users when
they perform web searches, and propose a framework [11] to mitigate them. Our
approach, which builds upon and improves our previous work (is presented in
Chapter 8) on search privacy, approximates the target search results by replacing
the private user query with a set of blurred or scrambled queries. The results
of the scrambled queries are then used to cover the original user interest. We
model the problem theoretically, define a set of privacy objectives with respect to
web search and investigate the effectiveness of the proposed solution with a set
of real queries on a large web collection. Experiments show great improvements
in retrieval effectiveness over a previously reported baseline in the Chapter 8.
Furthermore, the methods are more versatile, predictably-behaved, applicable
to a wider range of information needs, and the privacy they provide is more
comprehensible to the end-user.

Chapter 10: Conclusion
To wrap up the dissertation this chapter lists the main contributions of our

work and provides an overview of on-going and future work.
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Chapter 2

Background

2.1 Privacy and Personal Data
2.1.1 About Privacy

Privacy is an elusive concept which can not be easily defined. According
to [214], privacy is the ability of an individual or group to seclude themselves
or information about themselves and thereby reveal themselves selectively. The
boundaries and content of what is considered private differ among cultures and
individuals, but share basic common themes. Privacy is sometimes related to
anonymity, the wish to remain unnoticed or unidentified in the public realm.
When something is private to a person, it usually means there is something within
them that is considered inherently special or personally sensitive. The degree to
which private information is exposed therefore depends on how the public will
receive this information, which differs between places and over time. Privacy par-
tially intersects security, including for instance the concepts of appropriate use,
as well as protection of information.

In this thesis we emphasize on information privacy. Information or data pri-
vacy refers to the evolving relationship between technology and the legal right
to, or public expectation of, privacy in the collection and sharing of data about
one’s self. Privacy concerns exist wherever uniquely identifiable data relating to a
person or persons are collected and stored, in digital form or otherwise. In some
cases these concerns refer to how data is collected, stored, and associated. In other
cases the issue is who is given access to information. Other issues include whether
an individual has any ownership rights to data about them, and/or the right to
view, verify, and challenge that information.

Various types of personal information are often associated with privacy con-
cerns. For several reasons, individuals may object to personal information such as
their religion, sexual orientation, political affiliations, or personal activities being
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revealed, perhaps to avoid discrimination, personal embarrassment, or damage to
their professional reputations.

It is generally agreed that the first publication advocating privacy in the
United States was the article by Samuel Warren and Louis Brandeis [207]. In
this article, the two American lawyers determined the privacy as “the right to
be let alone”. The reason for this article was a response to recent technological
developments, such as photography, and sensationalist journalism, also known as
yellow journalism. Photographs, for example, were used by the yellow press, in
the view of the authors, as an attack to the personal privacy in accordance with
the terms of the right to be let alone.

The most common definition of privacy that is used today, is that of Alan
Westin: “The right of the individual to decide what information about himself
should be communicated to others and under what circumstances” [208]. Another
well known term for privacy that is used for the protection of personal data, and
is also consistent with the definition of the Westin, is that of informational self-
determination [211]. The term of informational self-determination was first used
in the context of a German constitutional ruling relating to personal information
collected during the 1983 census.

2.1.2 Privacy Laws
Privacy law [214] is the area of law concerning the protecting and preserving

of privacy rights of individuals. While there is no universally accepted privacy
law among all countries, some organizations promote certain privacy regulations,
which should be followed by individual countries in order for personal information
to be protected; the collectively referred to as Fair Information Practices (FIP).
The most important privacy laws by county are as follows:

Europe. For Europe, Article 8 of the European Convention on Human Rights
(ECHR) guarantees the right to respect for private and family life, one’s home
and correspondence. The European Court of Human Rights (ECtHR) in Stras-
bourg has developed a large body of jurisprudence defining this fundamental right
to privacy. The European Union requires all member states to legislate to ensure
that citizens have a right to privacy, through directives such as the Data Protec-
tion Directive 95/46/EC [80] on the protection of personal data. It is regulated in
the United Kingdom by the Data Protection Act 1998 and in France data protec-
tion is also monitored by the CNIL, a governmental body which must authorize
legislation concerning privacy before them being enacted. Based on the privacy
regulations, each individual has the right to protect his privacy by retaining the
control over his personal data and knowing who, when and why gets access to his
data. Furthermore, when an individual makes a transaction, only the minimum
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possible amount of personal information that is needed to complete it should be
disclosed. That is, release of personal data should be done in such a way that only
the absolutely necessary items are disclosed and only when it is really needed.
Moreover, the disclosure should take place with clear terms on how the personal
data will be used.

United Kingdom. In the United Kingdom, it is not possible to bring an ac-
tion for invasion of privacy. An action may be brought under another tort (usu-
ally breach of confidence) and privacy must then be considered under European
Community law. In the UK, it is sometimes a defense that disclosure of private
information was in the public interest. There is, however, the Information Com-
missioner’s Office (ICO), an independent public body set up to promote access
to official information and protect personal information. They do this by promot-
ing good practice, ruling on eligible complaints, giving information to individuals
and organizations, and taking action when the law is broken. The relevant UK
laws include: Data Protection Act 1998 (DPA) [195]; Freedom of Information
Act 2000; Environmental Information Regulations 2004; Privacy and Electronic
Communications Regulations 2003.

United States. Concerning privacy laws of the United States, privacy is not
guaranteed per se by the Constitution of the United States. The Supreme Court
of the United States has found that other guarantees have “penumbra” that im-
plicitly grant a right to privacy against government intrusion, for example in Gris-
wold v. Connecticut (1965). In the United States, the right of freedom of speech
granted in the First Amendment has limited the effects of lawsuits for breach of
privacy. Privacy is regulated in the U.S. by the Privacy Act of 1974 [196], and var-
ious state laws. Certain privacy rights have been established in the United States
via legislation such as the Children’s Online Privacy Protection Act (COPPA),
the Gramm-Leach-Bliley Act (GLB), the Health Insurance Portability and Ac-
countability Act (HIPAA) [1], the Cable TV Privacy Act [197], and the Video
Privacy Protection Act [198].

Canada. Canadian privacy law is governed federally by multiple acts, including
the Canadian Charter of Rights and Freedoms, and the Privacy Act (Canada).
Mostly this legislation concerns privacy infringement by government organiza-
tions. Data privacy was first addressed with the Personal Information Protection
and Electronic Documents Act (PIPEDA) [35], and provincial-level legislation
also exists to account for more specific cases personal privacy protection against
commercial organizations.

Australia. In Australia there is the Privacy Act 1988 [15]. Privacy sector pro-
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visions of the Act apply to private sector organizations with a link to Australia,
including: 1. individuals who collect, use or disclose personal information in the
course of a business. For example, a sole trader’s business activities will be reg-
ulated (unless it’s a small business), but information gathered outside business
activities won’t be; 2. bodies corporate; and 3. partnerships, unincorporated as-
sociations and trusts - any act or practice of a partner, committee member or
trustee is attributed to the organization. Organizations outside Australia must
comply with the provisions in some circumstances. Sending information out of
Australia is also regulated.

2.1.3 Criteria for Privacy Protection
2.1.3.1 k-Anonymity

The k-anonymity criterion is a non-probabilistic metric for anonymity con-
cerning entries in statistical databases such as released by data holders for re-
search purposes [191]. The author’s interest in [191] is in re-identifiability of
persons based on their entries in such databases, e.g. through inferences over
multiple queries to the database or linking between different databases. A statis-
tical database provides k-anonymity protection if the information for each person
contained within cannot be distinguished from at least k − 1 other individuals
who appear in the database.

In [191] the author applies set-theory to formalize the notions of a table,
rows (or ‘tuples’) and columns (or ‘attributes’), and the quasi-identifier concept
introduced by Dalenius [48]. A quasi-identifier is a set of attributes that are
individually anonymous, but in combination can uniquely identify individuals.

Definition 1 (k-anonymity) A simple definition of k-anonymity [42] in the
context of this work is that no less than k individual users can be associated with
a particular personal data value.

The k-anonymity model assumes a global agent to calculate the metric. It also
depends on the data holder’s competence and willingness to correctly identify and
work around quasi-identifiers. k-Anonymity protects against the ‘oblivious’ ad-
versary targeting anyone (re-identifying anything he can, hoping to get lucky)
as well as the adversary targeting a specific individual. One of the limitations of
the original k-anonymity model is that it does not take into account the situation
where the sensitive attribute has the same value for all k rows and is revealed any-
way. l-Diversity was introduced to address this by requiring that, for each group
of k-anonymous records in the data set, at least l different values occur for the
sensitive column [135]. Further developments include t-closeness, m-invariance,
δ-presence and p-sensitivity [34, 131, 150, 223].
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2.1.3.2 Differential Privacy

Consider a trusted party that holds a dataset of sensitive information (e.g.
medical records, voter registration information, email usage) with the goal of
providing global, statistical information about the data publicly available, while
preserving the privacy of the users whose information the data set contains. Such
a system is called a statistical database. The notion of differential privacy for-
malizes the notion of privacy in statistical databases. Differential privacy aims
to provide means to maximize the accuracy of queries from statistical databases
while minimizing the chances of identifying its records. Also, the aim of differ-
ential privacy is to ensure that the ability of an adversary to inflict harm (or
good, for that matter) – of any sort, to any set of people – should be essentially
the same, independent of whether any individual opts in to, opts out of, the
dataset [73, 72]. The formal definition of differential privacy follows.

Definition 2 (ϵ-Differential privacy [72]) A randomized function K gives ϵ-
differential privacy if for all data sets D1 and D2 differing on at most one element,
and all S ⊆ Range(K), the following holds:

Pr[K(D1) ∈ S] ≤ exp(ϵ)× Pr[K(D2) ∈ S]

The probability is taken is over the coin tosses of K.

2.1.4 Privacy Types
There are two distinct problems that arise in the setting of privacy-preserving

computations [132]:

(a) The first is to decide which functions can be safely computed, where safety
means that the privacy of the participants is preserved if the result of the
computation is disclosed. We will assume that the outcomes of the compu-
tations do not violate the privacy of the participants and will not further
consider this problem in this work.

(b) The second is how, meaning with which algorithms and protocols, to com-
pute the results while minimizing the damage to privacy. For example, it is
always possible to pool all of the data in one place and run the computation
algorithm on the pooled data. However, this is exactly what we don’t want
to do.

The focus in this dissertation is how to achieve privacy of type (b), that is,
how to perform computations without pooling the personal data, and in a way
that reveals nothing but the final results of the computation.
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2.1.5 Personal Data
Personal data is any information relating and describing a person, such as:

identifying information (name, age, residence, occupation, marital status, etc.),
physical characteristics, education, work (experience, work habits, etc.), economic
status (income, assets, economic behavior, etc.), interests, activities and habits.
The person (natural person) to whom the data refer is called “data subject”.

Beyond the general classification of some data as personal, there is a sub-
set of those that is described by the term “sensitive personal data”. Sensitive is
called the personal data of a person that reveals racial or national origin, political
opinions, religious or philosophical beliefs, membership in a trade union, health,
social welfare, sexual orientation, criminal prosecutions and convictions, as well
as participation in related to the above associations. The sensitive personal data
is protected by the law with stricter regulations than the simple personal data.

Apart from these two categories of data that is described by the legislature
[213], and institutionally falling under the supervision of responsible independent
authority, there is a different category of data that is called “Personally Identifi-
able Information” (PII). The PII is information that can be used on its own or
with other information to identify, contact, or locate a single person, or to iden-
tify an individual in context. This data can be single, e.g. the identity number,
or combinations, e.g. the birth date and the zip code, and can accurately identify
an individual.

It should be emphasized that the personal identifiable data is not limited only
to personal data. An oft-cited example is that the 87% of the U.S. population can
be identified by the combination of gender, birth date and zip code of residence.

From the above follows a critical conclusion. Knowing a group of information,
such as the history of searches of an unknown user in a search engine it can lead
us to extract relevant data, including sensitive personal data of the individual.
Since the identification of the initially unknown user can possibly be done from a
group of personally identifiable information that may be entered in searches, we
can accordingly extract from the form and the content of the searches information
about his actions and also his thoughts. As a result, form an anonymous set of
information, in the first level we may recognize the creator of the questions, and
then, in the second level we may retrieve sensitive data that concern him.

Finally, due to recent advances in the development of mobile devices and gen-
erally Ubiquitous Computing technologies, it is now possible to collect “dynamic
personal data”. Examples of this special category of personal data are the geolo-
cation (geographic position) and information relating to the physical condition
and health of an individual, such as blood pressure, heart rate and mood. The
television viewing records of individuals also belong to this category. In this dis-
sertation, we examine how to protect such personal data while at the same time
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making use of it.

2.2 Basic Concepts of Cryptography
2.2.1 Main Idea of Cryptography

The need to send a message from a sender to a recipient, without risking to
be read by someone else, so that this message to be sent with security, is a main
subject of cryptography [179]. This initial message is the plaintext (or cleartext).
The process by which the message is hidden from the content of the information is
called encryption. The encrypted message is the ciphertext. The process of chang-
ing the ciphertext back to the plaintext is called decryption. (Note: According
to the standard ISO 7498-2, the terms “encipher” and “decipher” instead of the
terms “encrypt” and “decrypt” are used, respectively.) All these are presented in
Figure 2.1.

Figure 2.1: Encryption and decryption.

The science that has as its object the security of messages is the cryptogra-
phy, and is performed by cryptographers. The cryptanalysts are engaged in the
cryptanalysis, the breaking of ciphertext, so that to be able to see what is hidden
behind the encrypted data. The branch of science that deals with cryptography
and cryptanalysis is the cryptology and those who make this profession are the
cryptologists. The modern cryptologists are generally trained in theoretical math-
ematical level. In practice with the term cryptography we usually refer overall in
cryptology [179].

Definition 3 (Cryptography) Cryptography is the practice and study of tech-
niques for secure communication in the presence of third parties (called adver-
saries). More generally, it is about constructing and analyzing protocols that
overcome the influence of adversaries and which are related to various aspects in
information security such as data confidentiality, data integrity, authentication,
and non-repudiation.

The plaintext is indicated by the letter M (message) or the letter P (plain-
text). The plaintext can be a stream of bits, a text file, an image file, a stream
of digital voice, a digital video image etc. With regard to a computer, the M is
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simply binary data. The plaintext may be either the transport or storage of data.
Essentially, the M is the message that is encrypted.

Let us now assume that the ciphertext is indicated by the letter C. The
ciphertext is also binary data, sometimes the same size with the M and others
may be greater. (The encryption in combination with the compression can lead so
that the C to be less than M , without the encryption can be performed directly.)
The encryption function E acts on the M to produce the C. The mathematical
expression of this is:

E(M) = C

In the reverse process, the decryption function D acts on the C to produce the
M :

D(C) = M

Since the essence of the encryption and then the decryption of a message is to
regain the initial plaintext, the following equation shows this:

D(E(M)) = M

2.2.2 Cryptographic Goals
Cryptography is often used to provide services that are related to various

aspects in information security such as:

• Confidentiality is a service used to keep the content of information from
all but those authorized to have it. Privacy is sometimes synonymous with
confidentiality.

• Integrity is a service which addresses the unauthorized alteration of data.
To assure data integrity, one must have the ability to detect data manipu-
lation by unauthorized parties.

• Authentication is a service related to identification. This function applies
to both entities and information itself. Two parties entering into a commu-
nication should identify each other.

• Non-repudiation is a service which prevents an entity from denying pre-
vious commitments or actions.

These concepts are critical for the social interaction with the computer usage,
and reflect with the interpersonal interactions. Some examples that can apply to
the above services are:

− That someone is the one who says he is (Authentication).
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− That a driver’s license, medical degree, and the passport is valid (Signature).

− That a document is absolutely certain that it have come from a particular
person (Non-repudiation).

− That a document has not been altered or modified (Integrity).

2.2.3 Algorithms and Keys of Cryptography
A cryptographic algorithm (known as cipher), is the mathematical function

that is used for encryption and decryption [179]. Generally, there are two related
functions: one for encryption and another for decryption.

If the security of an algorithm is based on the secret operating mode of the
algorithm, then such an algorithm is restricted. Such restricted algorithms have
only historical interest and are considered inadequate for today’s standards. A
large or changing group of users can not use them, because every time which a
user changes group he must use a different algorithm. Also if someone accidentally
reveals the secret, then everyone will have to change the algorithm.

Furthermore, these restricted algorithms do not allow any quality control or
standardization. Each user group must have a unique algorithm. Such a group can
not use ready products of hardware or software, because anyone could buy the
same product and learn the algorithm, so they have to write themselves the algo-
rithms and their applications. If no one in the group is not good cryptographer,
they will not be able to know if their algorithm is safe.

Despite these significant drawbacks, the restricted algorithms are very popular
for low security applications. In these cases the users neither realize nor care about
the security problems that exist in their system.

The modern encryption systems solve this problem by using a key, that is
indicated by the letter K. This key can be any of a large number of values. The
range of possible values ��of the key is called keyspace. Therefore, the procedures
of encryption and decryption utilize this key (i.e., depend on this key, and this fact
is indicated by the indicator K), so the functions now become (see Figure 2.2):

EK(M) = C
DK(C) = M

DK(EK(M)) = M

Some algorithms use different keys in the encryption and the decryption (see
Figure 2.3). Where the encryption key, K1, is different from the corresponding
decryption key, K2. In this case, the functions become:

EK1(M) = C
DK2(C) = M

DK2(EK1(M)) = M
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Figure 2.2: Encryption and decryption with one key.

Figure 2.3: Encryption and decryption with two different keys.

The whole security of these algorithms is based on the key (or keys) and not
in the details of the algorithm. This means that the algorithm can be published
and analyzed, and as a result the products that use the algorithm can be mass-
produced. It also does not matter if someone knows your algorithm, you can not
read your messages because he does not know the special key. Thus, a modern
cryptographic system now consists of the algorithm, all the possible plaintexts,
the ciphertexts and the keys.

2.2.4 Symmetric Algorithms
There are two general types of key-based algorithms: the symmetric algorithms

and the public-key algorithms. The symmetric algorithms, which are sometimes
called conventional algorithms are algorithms where the encryption key can be
calculated from the decryption key and vice versa. In most symmetric algorithms,
the encryption key and the decryption key are the same. These algorithms are
also called single-key algorithms and require the sender and the receiver to agree
on a key before they can communicate securely. The security of a symmetric
algorithm is based in the key, with no need to hide the key points of encryption
and decryption. If it is necessary to keep the communication secret, the key must
remain secret [179].

The encryption and decryption with a symmetric algorithm are shown by the
equations:

EK(M) = C
DK(C) = M

The symmetric algorithms can be divided into two categories:
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1. Those that the plaintext is a bit (or sometimes a byte) at a time and are
called stream algorithms or stream ciphers.

2. And those that the plaintext is a group of bits. The group of bits is called
block, and these algorithms are called block algorithms or blocks ciphers.
For the modern computer algorithms, a common size of block is 64 bits,
large enough to prevent breakdown and small enough to be practicable.

2.2.5 Public-key Algorithms
The public-key algorithms (or asymmetric algorithms) are designed so that the

key that is used for encryption is different from the key that is used for decryption.
Furthermore, the decryption key can not be calculated (at least to a reasonable
amount of time) from the encryption key. These algorithms are called as “public-
key” because the encryption key can be made public: A stranger can use the
encryption key to encrypt a message, but only the person with the corresponding
decryption key can decrypt the message. In these systems, the encryption key is
often called the public key and the decryption key is often called the private key.
The private key is also sometimes called secret key, but to avoid confusion with
the symmetric algorithms, this phrase is generally not used [179]. The encryption
that uses the public key K can be described by the following equation:

EKpub
(M) = C

The decryption with the private key is described by the equation:

DKpri
(C) = M

Sometimes, the messages are encrypted with the private key and decrypted with
the public key. Specifically, this is used in digital signatures. Despite the potential
confusion, these processes are described by the equations:

EKpri
(M) = C

DKpub
(C) = M

2.2.6 Homomorphic Encryption
Homomorphic encryption [210] is a form of encryption which allows specific

types of computations to be carried out on ciphertext and obtain an encrypted re-
sult which decrypted matches the result of operations performed on the plaintext.
For instance, one person could add two encrypted numbers and then another per-
son could decrypt the result, without either of them being able to find the value of
the individual numbers. This property can have both positive and negative effects
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on a cryptographic system. So the model of homomorphic encryption is vulner-
able to malicious attacks from its design, making it unsuitable for secure data
transmission. But the homomorphic properties of various cryptographic systems
can be used to create secure voting systems, collision-resistant hash functions, pri-
vate information retrieval schemes and enable widespread use of cloud computing
by ensuring the confidentiality of processed data.

Definition 4 (Homomorphic Encryption) Homomorphic encryption [172] is
a form of encryption where one can perform a specific algebraic operation on the
plaintext by performing a (possibly different) algebraic operation on the cipher-
text. Particularly, an encryption algorithm E() is homomorphic if given E(x1) and
E(x2), one can obtain E(x1 ◦ x2) without decrypting x1, x2, for some operation
◦.

Homomorphic cryptosystems can be separated into two main classes. The
first are the partially homomorphic cryptosystems that can support only one
operation, for example addition or multiplication, and the second are the fully
homomorphic cryptosystems [87] that support both addition and multiplication
operations. In this thesis, we only focus on the partially homomorphic cryptosys-
tems that are more practical and efficient. More details about partially homo-
morphic cryptosystems we will see in the Sections 2.4, 2.5 and 2.6. Moreover,
there are recent results on “somewhat”1 homomorphic cryptosystems [88], i.e.,
cryptosystems which support a limited number of homomorphic operations in-
cluding both additive and multiplicative operations. During the last years fully
homomorphic cryptosystems supporting any number of additions and multipli-
cations have been published, starting with the seminal work of [87]. However,
so far fully homomorphic cryptosystems are not efficient enough to be used in
practical applications, though one could probably use “somewhat” homomorphic
cryptosystems for some appropriate functions. A discussion of the efficiency and
the practical relevance of current fully homomorphic and somewhat homomorphic
cryptosystems, and their applications in cloud computing, can be found in [149].

2.3 Cryptographic Hash Algorithms
2.3.1 One-way Hash Functions

A hash function is a function that receives as input data of arbitrary length
and turns that on one-way data (with no possibility of return in the original

1The term “somewhat” is used by Gentry [88] himself to refer to an encryption scheme
that can support a limited number of arithmetic operations on the encrypted data before the
accumulated noise makes the resulting ciphertext indecipherable.
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form). In fact, the one-way hash functions are based on the idea of a compression
function. The result of this one-way function is a hash variable with n length,
for given input greater length of m. The inputs of the compression function is
a block message and the output of the previous block of text [179] (Figure 2.4).
The output of this function is the hash of all blocks up to that point. The hash
of block Mi will be:

hi = f(Mi, hi−1)

Figure 2.4: One-way hash function.

This hash variable, together with the next block message, becomes the next
input in the compression function. The hash of entire message is the hash of the
last block.

The pre-image (i.e., before beginning the process) must contain a binary repre-
sentation of the length of the entire message. This technique overcomes a possible
security problem in messages that may have different lengths hashing for the same
variable. This technique is sometimes referred as MD-strengthening.

Several researchers have theoretically examined that if the compression func-
tion is secure, then the hashing method arbitrary length with pre-image is also
safe, but nothing is proved.

2.3.2 Secure Hash Algorithm
The family of secure hash algorithm (SHA) is a set of related cryptographic

hash functions. Until now, the SHA family consists of four members, the SHA-0,
the SHA-1, the SHA-2 and the SHA-3. The most commonly used function of this
family, the SHA-2, is adopted in a wide variety of popular security applications
and protocols, including TLS, SSL, PGP, SSH, S/MIME, and IPSec. The SHA-1
is considered the successor of MD5, an earlier, widely used hash function. The
SHA algorithms were designed by the U.S. National Security Agency (NSA) and
published by the National Institute of Standards and Technology (NIST).

The first member of the family was published in 1993 and is officially called
SHA. However, as it is often called SHA-0 to avoid confusion with its successors.
Two years later it was published the SHA-1, which is the first successor of SHA. In
2001, four additional hash functions in the SHA family, named after their digest
lengths (in bits), were published: SHA-224, SHA-256, SHA-384, and SHA-512
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(sometimes collectively referred as SHA-2). In 2012, the SHA-3 that consists of
a 5 × 5 array of 64-bit words, 1600 bits total, was published. In Table 2.1 the
different types of SHA [218] are shown.
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SHA-0 160 160 512 264 − 1 32 80 Yes
SHA-1 160 160 512 264 − 1 32 80 Yes

SHA-2

SHA-224 224 256 512 264 − 1 32 64 Yes
SHA-256 256
SHA-384 384

512 1024 2128 − 1 64 80 YesSHA-512 512
SHA-512/224 224
SHA-512/256 256

SHA-3 224/256/384/512 1600 64 120 None

Table 2.1: Comparison of SHA functions [218].

2.4 RSA Cryptosystem
One of the most popular cryptographic systems is the RSA cryptosystem [173],

that was coined in 1978 by Ronald Rivest, Adi Shamir and Leonard Adelman and
was named from the initials letters of their surnames. The RSA is a public-key
cryptosystem and until now is considered impossible to crack using modern com-
puters, but if sometime the quantum computers are constructed this may radically
change. Today is widely used especially in financial and banking transactions.

2.4.1 RSA Algorithm
The RSA algorithm [216] consists of three main parts: the key generation, the

encryption algorithm and the decryption algorithm.
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Key Generation. The procedure that should be followed to create a pair (public
and private) of keys is:

1. We choose two distinct prime integers the p and q and calculate their prod-
uct n = p · q.

2. We choose a random number d, which is prime as to the (p−1) and (q−1),
so that the greatest common divisor of d, (p− 1) and (q− 1) to be the one.

3. We calculate the number e from the equation: (e ·d) mod (p−1)(q−1) = 1.
So, the e is the inverse of d: d−1 mod (p− 1)(q − 1).

4. The public key is the pair of numbers (e, n).

5. The private key is the pair of numbers (d, n).

Encryption Algorithm. The algorithm that is followed to encrypt a message
is as follows:

1. The public key is sent to the sender of the message.

2. The sender encrypts the message with the public key (e, n).

3. The encrypted message Ek(m) = me mod n is sent to the recipient.

Decryption Algorithm. The algorithm that is followed to decrypt the initial
message is:

1. The private key (d, n) is held by the recipient.

2. In order to decrypt the message, it is only needed the private key.

3. The result of the decryption is Dk(c) = cd mod n, where c = Ek(m).

2.4.2 Homomorphic Property of RSA
The multiplicative homomorphic encryption property of the RSA cryptosys-

tem means that multiplication of encrypted values corresponds to product of de-
crypted ones. Concretely, if the x1 and x2 are two plain integers, where x1, x2 ∈
Zn, and the notation E(x) is used to denote the encryption of the message x, then
the RSA homomorphic property is shown by the following equation:

E(x1) · E(x2) = xe
1 x

e
2 mod n

= (x1 x2)
e mod n

= E(x1 · x2)
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2.4.3 Security of RSA
In order to better understand the security of RSA cryptosystem we will firstly

mention how we can crack it (what we have to do to decrypt a encrypted message
without to have the private key). Since, we know the number n from the public key
(e, n), we only have to analyze this number n in product of two prime numbers
in order to find the numbers p and q. Once we find them, the decryption is
immediately done since the method of the RSA system is known.

While it is very easy to multiply two prime numbers in order to find their
product, it is very difficult to analyze a number into a product of two primes and
it is practically impossible if the number has many digits. So the primes p and q
should be large enough so that the best known factoring algorithm requires time
greater than in which the data must be protected. In Table 2.2, it is presented
illustrative key sizes and corresponding cases in which should apply these sizes.

p, q n protection time data type
256 bits 512 bits few weeks information that shortly affects

the stock exchange (e.g. decision
to merge two companies)

512 bits 1024 bits 50 - 100 years personal secrets
1024 bits 2048 bits > 100 years commercial secrets, personal data
2048 bits 4096 bits age of the Universe military secrets

Table 2.2: RSA key sizes and indicative data types for protection.

In order to prove that the RSA cryptographic system can not crack, Rivest,
Shamir and Adelman have requested who is think that he can analyze an integer
with 129 digits into a product of two prime numbers. After 17 years, the number
was analyzed by a network of 1600 computers. So with today’s technological
advances, the problem of analyzing a number into a product of two prime numbers
can not be solved using modern computers and when the number has many digits.

2.5 ElGamal Cryptosystem
The ElGamal cryptosystem [139] is a probabilistic asymmetric public-key en-

cryption algorithm that is based on the basic idea of Diffie-Hellman [53]. It was
firstly described by Taher Elgamal in 1984. The security of ElGamal encryption
is based on the discrete logarithm problem. In the following subsections, there is
a detailed description of the algorithm.
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Definition 5 (Probabilistic Encryption) Probabilistic encryption is the use
of randomness in an encryption algorithm, so that when encrypting the same
message several times it will, in general, yield different ciphertexts.

2.5.1 ElGamal Algorithm
The ElGamal algorithm [209] consists of three main parts: the key generation,

the encryption algorithm and the decryption algorithm.

Key Generation. The procedure that should be followed to create a pair (public
and private) of keys is:

1. We choose a random large prime number p and a prime generator g from
the set Zp

∗, where Zp
∗ denotes the set of all integers {1, 2, . . . , p − 1}, i.e.

gk ̸= 1 mod p for all k smaller of p− 1.

2. We choose a random number a in the interval 1 ≤ a ≤ p− 1 as the private
key.

3. We calculate the y = ga mod p.

4. The public key is the (p, g, y) and the private key is the a.

For finding the generator g should note the following:

• If the gk = 1 mod p is true for a integer in 1 ≤ k ≤ p− 1, then the number
k necessarily divides the p− 1.

• So, if we want to check if a number g is a generator in mod p, we do not
need to raise to all the powers {1, 2, . . . , p− 1}, it is more sufficient to raise
to the divisors of the p− 1.

Encryption Algorithm. The algorithm that is followed to encrypt a message
is as follows:

1. We choose a random number r in the set {1, 2, . . . , p− 1}.

2. We express the message with an integer m in the set {1, 2, . . . , p− 1}.

3. We calculate the γ = gr mod p and the δ = myr mod p.

4. So the ciphertext is the Ek(m, r) = (γ, δ).
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Decryption Algorithm. The algorithm that is followed to decrypt the initial
message is:

1. We calculate the γ−a, from the moment that we know the private key a.

2. The initial message is the m = (γ−a) δ mod p.

3. With other words, the recovery of the initial message is the operation δ
γa .

4. So the initial plaintext is the Dk(γ, δ) = m (mod p).

2.5.2 Homomorphic Property of ElGamal
The multiplicative homomorphic encryption property of the ElGamal cryp-

tosystem means that multiplication of encrypted values corresponds to product
of decrypted ones. Concretely, if the x1 and x2 are two plain integers, where
x1, x2 ∈ Z∗

p, and the notation E(x) is used to denote the encryption of the message
x, then the ElGamal homomorphic property is shown by the following equation:

E(x1) · E(x2) = (gr1 , x1 · yr1)(gr2 , x2 · yr2)
= (gr1+r2 , (x1 · x2)y

r1+r2)

= E(x1 · x2)

2.5.3 Security of ElGamal
The adversary will attempt to attack on the ElGamal cryptosystem, he must

recover the private key a, by:

y = ga mod p

with knowledge of the public key (p, g, y). So, the adversary should solve the dis-
crete logarithm with base g. However, we believe that the security of ElGamal
cryptosystem is based on discrete logarithm, because the solution of discrete log-
arithm can makes the cryptosystem unsafe, but it has not proved the opposite,
i.e. that that the security of the cryptosystem is exclusively based on the dis-
crete logarithm problem. The discrete logarithm problem is also known and as
decisional Diffie-Hellman (DDH) assumption. If the decisional Diffie-Hellman as-
sumption (DDH) is held, then the ElGamal achieves semantic security [95], that
is, it is infeasible for a computationally bounded adversary to derive significant
information about a message (plaintext) when given only its ciphertext and the
corresponding public encryption key.
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The existence of the random number r has as result the possibility of matching
of plaintext with p−1 ciphertexts. The process, where the plaintext is mixed with
a random variable, is called randomization process. This step, which is not in the
RSA, makes the ElGamal cryptosystem more resistant to attacks such as those
presented in RSA. Of course, the use of random number introduces an additional
risk that leads to an additional requirement. For each message that is encrypted,
you should choose a different random number r. If two messages m and m′ are
encrypted with the same random number r, then the corresponding ciphertexts
will be the (γ, δ) and (γ′, δ′), where the knowledge of a message allows the recovery
of the other as follows:

δ

δ′
=

m · yr

m′ · yr
=

m

m′

Finally, as regards the size of the p, the lower threshold is proposed to be 1024
bits. Generally, during the encryption with the ElGamal cryptosystem, this size
is important implementation criterion, due to the increased time that is required
for the encryption (two exponentiation operations versus one in RSA) and the
expansion of ciphertext. These disadvantages have as result the reduced size of
the preferred modulus.

2.6 Paillier Cryptosystem
The Paillier cryptosystem [154], invented and implemented by Pascal Paillier

in 1999, is a probabilistic asymmetric algorithm (see Definition 5 in Section 2.5)
for public-key cryptography. The problem of computing n-th residue classes is
believed to be computationally difficult. The decisional composite residuosity
assumption is the intractability hypothesis upon which this cryptosystem is based.
In the following subsections, there is a detailed description of the algorithm.

2.6.1 Paillier Algorithm
The Paillier algorithm [212] consists of three main parts: the key generation,

the encryption algorithm and the decryption algorithm.

Key Generation. The procedure that should be followed to create a pair (public
and private) of keys is:

1. We choose two large prime numbers p and q randomly and independently
of each other such that gcd(pq, (p− 1)(q − 1)) = 1.

2. We calculate the n = pq and the λ = lcm(p− 1, q − 1).

28



Chapter 2: Background

3. We select a random integer g where g ∈ Z∗
n2 .

4. We ensure that n divides the order of g by checking the existence of the fol-
lowing modular multiplicative inverse: µ = (L(gλ mod n2))−1 mod n, where
function L is defined as L(u) = u−1

n
.

5. The public key is the (n, g) and the private key is the (λ, µ).

Encryption Algorithm. The algorithm that is followed to encrypt a message
is as follows:

1. Let m be a message to be encrypted where m ∈ Zn.

2. We select a random number r where r ∈ Z∗
n.

3. The encrypted message is computed as: Ek(m, r) = gm · rn mod n2.

Decryption Algorithm. The algorithm that is followed to decrypt the initial
message is:

1. Let c be the ciphertext of the encrypted message m where c ∈ Z∗
n2 .

2. In order to decrypt the message, it is only needed the private key (λ, µ).

3. The result of the decryption is Dk(c) = L(cλ mod n2) · µ mod n.

2.6.2 Homomorphic Property of Paillier
The additive homomorphic encryption property of the Paillier cryptosystem

means that multiplication of encrypted values corresponds to sum of decrypted
ones. Concretely, if the x1 and x2 are two plain integers, where x1, x2 ∈ Zn, and
the notation E(x) is used to denote the encryption of the message x, then the
Paillier homomorphic property is shown by the following equation:

E(x1) · E(x2) = (gx1 · rn1 ) · (gx2 · rn2 )
= g[x1+x2 mod n] · (r1r2)n mod n2

= E([x1 + x2 mod n])
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2.6.3 Security of Paillier
The original Paillier cryptosystem [212] as shown above does provide semantic

security [95] against chosen-plaintext attacks (IND-CPA). The ability to success-
fully distinguish the challenge ciphertext essentially amounts to the ability to
decide composite residuosity. The so-called decisional composite residuosity as-
sumption (DCRA) is believed to be intractable.

Because of the aforementioned homomorphic properties however, the system is
malleable, and therefore does not enjoy the highest echelon of semantic security
that protects against adaptive chosen-ciphertext attacks (IND-CCA2). Usually
in cryptography the notion of malleability is not seen as an “advantage”, but
under certain applications such as secure electronic voting [20] and threshold
cryptosystems [49], this property may indeed be necessary.

Paillier and Pointcheval [155] however went on to propose an improved cryp-
tosystem that incorporates the combined hashing of message m with random r.
The hashing prevents an attacker, given only c, from being able to change m in
a meaningful way. Through this adaptation the improved scheme can be shown
to be IND-CCA2 secure in the random oracle model.

2.7 Public Key Certificate
In cryptography, a public key certificate [215] (or identity certificate) is a

certificate which uses a digital signature to bind together a public key with an
identity (ie, information such as the name of a person or organization, the address,
etc.). This certificate may be used to check whether a public key belongs to an
individual.

In a typical public key infrastructure (PKI) scheme, the signature will be
of a certificate authority (CA). In a web of trust scheme, the signature is of
either the user (a self-signed certificate) or other users (”endorsements”). In either
case, the signatures on a certificate are attestations by the certificate signer that
the identity information and the public key belong together. The most common
certification standard is the ITU-T X.509. Several PKI international standards
have been reviewed in [99].

A certificate may be revoked if it is found that the related private key has
been lost, or if the relationship (between an entity and a public key) that is
incorporated in the certificate is found to be inaccurate or has changed (e.g., if a
person changes work or name). If and the revocation is a rare occurrence, the user
should always check the validity of the certificate. This can be done by comparing
the certificate with a certificate revocation list (CRL), that is, a list of revoked or
canceled certificates. Another way to check the validity of certificates is also to
question the certificate authority (CA) using the online certificate status protocol
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(OCSP). Furthermore, a systematic and robust framework for the evaluation of
the certificate revocation mechanisms is presented in [107].

The contents of a typical digital certificate X.509 are:

• Serial Number: Used to uniquely identify the certificate.
• Subject: The person, or entity identified.
• Signature Algorithm: The algorithm used to create the signature.
• Signature: The actual signature to verify that it came from the issuer.
• Issuer: The entity that verified the information and issued the certificate.
• Valid-From: The date the certificate is first valid from.
• Valid-To: The expiration date.
• Key-Usage: Purpose of the public key (e.g. encipherment, signature, cer-

tificate signing).
• Public Key: The public key.
• Thumbprint Algorithm: The algorithm used to hash the public key cer-

tificate.
• Thumbprint: The hash itself, used as an abbreviated form of the public

key certificate.

2.8 Transport Layer Security
Transport Layer Security [219] (TLS) and its predecessor, Secure Sockets

Layer (SSL), are cryptographic protocols that provide communication security
over the Internet. They use asymmetric cryptography for authentication of key
exchange, symmetric encryption for confidentiality and message authentication
codes for message integrity. Several versions of the protocols are in widespread
use in applications such as web browsing, electronic mail, instant messaging and
voice-over-IP (VoIP).

The TLS protocol provides certified and isolated communication over the In-
ternet using cryptography. In a typical use, only the server is certified (i.e. its
identity is guaranteed) while the client remains anonymous. In a mutual certified
communication it is required an additional scheme of public key infrastructure
(PKI) to the clients. The TLS protocol allows client-server applications to com-
municate across a network in a way designed to prevent eavesdropping1 and
tampering2. Since protocols can operate either with or without TLS (or SSL), it
is necessary for the client to indicate to the server whether it wants to set up a
TLS connection or not. There are two main ways of achieving this; one option

1Eavesdropping is the act of secretly listening to the private conversation of others without
their consent.

2Tamper-evident describes a device or process that makes unauthorized access to the pro-
tected object easily detected.
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is to use a different port number for TLS connections (for example port 443 for
HTTPS). The other is to use the regular port number and have the client request
that the server switch the connection to TLS using a protocol specific mechanism
(for example STARTTLS for mail and news protocols).

2.9 Secure Multi-Party Computation
In cryptography, the secure multi-party computation [217] (also known as

secure computation or multi-party computation (MPC)) is a problem that was
firstly proposed by Andrew C. Yao in 1982 [227]. The example that he used to
describe the secure multi-party computation is the millionaire’s problem: Alice
and Bob are two millionaires that want to find out who is richer without revealing
the precise amount of their wealth. In this problem, Yao proposed a solution that
allows Alice and Bob to satisfy their curiosity while at the same time respecting
the above limitation.

The millionaire problem and its solution gave way to a generalization to multi-
party protocols. In an MPC, a given number of parties P1, P2, . . . , PN each have a
private data, respectively D1, D2, . . . , DN . The parties want to compute the value
of a public function F on N variables at the point (D1, D2, . . . , DN). An MPC
protocol is secure if no party can learn more from the description of the public
function and the result of the global calculation. More analytically, the multi-
party protocol executed by P1, P2, . . . , PN securely if the following conditions
hold:

1. Completeness: If all parties P1, P2, . . . , PN honestly follow the protocol then
they obtain as output the correct computation of F on D1, D2, . . . , DN .

2. Input/Output Privacy: Any party behaving dishonestly in the protocol does
not gain any information about the private inputs/outputs of the other
parties (except the information that can be inferred by the output of the
protocol and the own private input).

In the following subsection we define what is a dishonest behavior and how
to prove that a protocol securely implements a functionality F.

2.9.1 Dishonest Behavior/Security Notions
The dishonest behavior [91, 4] of the parties models the possible real-world

attacks from adversarial machines. According to how much power is given to
the adversary (corrupting honest machines, controlling schedule of/mauling the
messages over the network, controlling the activation of the protocols) different
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security notions are defined. In the following we classify the dishonest behavior
and therefore the security notions starting from the weakest one (that considers
a very restricted real-world adversary) to the strongest one (that gives to the
adversary full control over the network and the machines executing the protocol).

• Honest-But-Curious Adversary: The dishonest party must follow the
protocol but can arbitrarily analyze the protocol transcript off-line in order
to infer some additional information.

• Malicious Adversary: The dishonest party can arbitrarily deviate from
the protocol and corrupt (i.e. obtain the entire state).

– Adaptive/Static Corruption: Adaptive adversaries are allowed to
decide the parties to corrupt during the protocol execution therefore
depending upon the transcript and the state of the parties corrupted so
far. Static adversaries instead corrupt the parties before the protocol
execution starts.

– Parallel/Concurrent Composability: One can require that the
security of the protocol holds even when a dishonest party executes
several instances of the same protocol (resp. different protocols) con-
currently or in parallel. In this case we say that the protocol securely
realizes a functionality under parallel/concurrent (resp. general con-
current) composition.

• Computationally Bounded/Unbounded Adversary: According to the
computational capability of the real-world adversary each notion of secu-
rity shown above is denoted as computational or unconditional. The com-
putational setting assumes that the running time of the dishonest party is
bounded by a polynomial. Unconditional setting puts no restriction on the
running time of the adversary, i.e. it can be exponential.

Proving that a protocol satisfies a security notion - Ideal world/Real World
paradigm: Input/Output Privacy is formally proved using the ideal/real world
paradigm. Consider an ideal world in which there exists a trusted third party
(TTP) who computes the functionality F. In this world parties do not communi-
cate with each other but they send their inputs to the TTP and receive the output
of F. Since the TTP is trusted in this world the privacy of the parties’ inputs is
guaranteed by definition. In order to prove Input/Output privacy it is required
to show that whatever a dishonest party (the dishonest behavior depends of the
security notion that one wants to prove) can infer about the inputs/outputs of
the honest parties by exploiting the protocol execution in the real world, it can
be inferred also by an adversary (called simulator) playing in the ideal world and
interacting only with the TTP.
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2.10 Zero-Knowledge Proof
A zero-knowledge proof [94] (ZKP) or zero-knowledge protocol is a method

by which one party (the prover) can prove to another party (the verifier) that
a given statement is true, without conveying any additional information apart
from the fact that the statement is indeed true. For cases where the ability to
prove the statement requires some secret information on the part of the prover,
the definition implies that the verifier will not be able to prove the statement to
anyone else. Notice that the notion only applies if the statement being proven
is the fact that the prover has such knowledge. This is a particular case known
as zero-knowledge proof of knowledge, and it nicely illustrates the essence of the
notion of zero-knowledge proofs: proving that one possesses a certain knowledge
is in most cases trivial if one is allowed to simply reveal that knowledge; the
challenge is proving that one has such knowledge without revealing it or without
revealing anything else.

For zero-knowledge proofs of knowledge, the protocol must necessarily require
interactive input from the verifier, usually in the form of a challenge or challenges
such that the responses from the prover will convince the verifier if and only if
the statement is true (i.e., if the prover does have the claimed knowledge). This
is clearly the case, since otherwise the verifier could record the execution of the
protocol and prove it to someone else, contradicting the fact that proving the
statement requires knowledge of some secret on the part of the prover.

Some forms of non-interactive zero-knowledge proofs of knowledge exist, but
the validity of the proof relies on computational assumptions (typically the as-
sumptions of an ideal cryptographic hash function).

2.10.1 Properties of a ZKP
A zero-knowledge proof [220] must satisfy three properties:

1. Completeness: If the statement is true, the honest verifier (that is, one
following the protocol properly) will be convinced of this fact by an honest
prover.

2. Soundness: If the statement is false, no cheating prover can convince the
honest verifier that it is true, except with some small probability.

3. Zero-knowledge: If the statement is true, no cheating verifier learns any-
thing other than this fact. This is formalized by showing that every cheating
verifier has some simulator that, given only the statement to be proven (and
no access to the prover), can produce a transcript that “looks like” an in-
teraction between the honest prover and the cheating verifier.
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The first two of these are properties of more general interactive proof systems.
The third is what makes the proof zero-knowledge.

Zero-knowledge proofs are not proofs in the mathematical sense of the term
because there is some small probability, the soundness error, that a cheating
prover will be able to convince the verifier of a false statement. In other words,
they are probabilistic rather than deterministic. However, there are techniques to
decrease the soundness error to negligibly small values.

2.10.2 Variants of Zero-Knowledge
Different variants of zero-knowledge [220] can be defined by formalizing the

intuitive concept of what is meant by the output of the simulator “looking like”
the execution of the real proof protocol in the following ways:

• We speak of perfect zero-knowledge if the distributions produced by the
simulator and the proof protocol are distributed exactly the same.

• Statistical zero-knowledge means that the distributions are not necessar-
ily exactly the same, but they are statistically close, meaning that their
statistical difference is a negligible function1.

• We speak of computational zero-knowledge if no efficient algorithm can dis-
tinguish the two distributions.

1A negligible function is a function µ(x) : N→R such that for every positive integer c there
exists an integer Nc such that for all x > Nc, |µ(x)| < 1

xc .
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Polis Framework

3.1 Introduction
As the use of computers and the Internet becomes more popular by the minute,

the issue of protecting one’s personal data is more essential than ever. The way
electronic transactions are conducted nowadays, makes it necessary for the cus-
tomer to give away his personal data to the service provider and hope that the
latter will not use them in a malicious way. In order to protect personal informa-
tion, several organizations and countries have issued privacy regulations, which
should be followed in order for personal information to be protected; the collec-
tively referred to as Fair Information Practices (FIP). Examples of important FIP
regulation frameworks are the Data Protection Directive 95/46/EC (henceforth
referred to as The Directive) and follow-ups like the Canadian PIPEDA and UK’s
Data Protection Act (DPA).

In this work, we assert that electronic transactions can be feasible, whilst per-
sonal data resides at the individuals’ side. To support this claim, we design, build
and evaluate the prototype system Polis [77, 76], which implements the above
principle. We show that Polis can satisfy important data protection principles in
a natural and efficient way and describe how Polis can be integrated into online
transactions to manage personal data. The results of this work indicate that the
Polis approach can lead to a simple, scalable solution that can be beneficial to
both individuals and service providers.

3.2 Related Work
The idea that individuals should own their personal information themselves

and decide how this information is used, is discussed in [127]. A point made
in [177] is that, although considering personal data the owner’s private property
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is a very appealing idea, it would be rather difficult to practically apply it and
legally enforce it. Our approach proposes an idea that has the same practical
effect as considering personal data the owner’s private property, but withdraws
the legal objections involved with this idea. The economic aspects of privacy are
examined in [201] where the following point is made: “It is worth observing that
the Fair Information Practices principles would automatically be implemented if
the property rights in individual information resided solely with those individu-
als”. The argument that personal data would be safer at the user’s side is also
examined in [144].

Different kinds of frameworks that are related to personal data have recently
been proposed or are in progress. In particular, privacy sensitive management
of personal data in ubiquitous computing is discussed in [103], storing personal
data in an individual’s mobile device is examined in [108]. Protecting personal
data that is stored within a company is considered in [176, 117]. More related to
Polis is a rich but also complicated framework for privacy protection, proposed
in [133]. This framework is built on the principle that personal data is kept inside a
“Discreet Box”, located at the service provider’s side. An agent-based solution to
address usability issues related to P3P (Platform for Privacy Preferences Project)
is presented in [130]. Other results in this field, less related to Polis, can be
found in [89, 18, 100]. General surveys on privacy enhancing technologies are
given in [90, 101, 98]. To our knowledge, Polis is the first general framework for
managing personal data only at the owner’s side.

3.3 The Polis Approach
The Polis approach is based on the following principle:

“Polis-users are prohibited from storing any
personal data but their own.”

Polis is meant to be employed by privacy concerned internet users which fulfill
the requirements of having:

◦ A reliable, always-on access to the Internet, in order for his agent to be
always accessible.

◦ A certificate from an approved Certification Authority.

We design, implement and evaluate a Polis prototype and show that the above
simple and straightforward assumptions suffice to build a personal data man-
agement framework that works seamlessly with online transactions. The Polis
prototype and its evaluation are described in Section 3.7.
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3.3.1 Polis Concepts and Architecture
At this point we consider it necessary to introduce a few terms that will be

used in this work:

• In Polis, personal data refers to primitive personal information of individuals
like name, birth date, address, etc. Personal data corresponds to what is
called off-line identity in [3]. Our focus is on privacy-enhanced management
of the off-line identity.

• An individual Internet user is a potential customer who can purchase ei-
ther goods or services. This user can be called individual, customer or data
subject (according to The Directive). We will use the terms individual and
customer, interchangeably.

• An entity that provides the aforementioned goods or services can be called
shop, company, service provider or data controller (The Directive). We will
use the terms shop, company and service providers.

• Both individuals and companies can become Polis-users.

Every Polis-user is represented by a dedicated entity. This entity can be used to
instantiate a corresponding Polis-agent, which is the main architectural compo-
nent of Polis. The agent is used to manage the personal data of the entity and
to provide controlled access to it. Service providers use the agent to retrieve per-
sonal data from affiliated users. The general architecture of Polis, as well as the
constituents of a customer agent and a shop agent are presented in Figure 3.1.
We would like to emphasize the following characteristics of the Polis architecture:

• From the service provider’s point of view, Polis provides a decentralized
approach for the storage and management of personal data.

• On the contrary, from the customer’s point of view, Polis is a fully central-
ized system, in the sense that personal data is located and managed locally
by the owner’s agent.

3.3.2 Schemes for Personal Data and Policies
Critical components for a personal data management framework like Polis are

the schemes for representing personal data and policies. Some known schemes
for personal data are P3P [204] and CPExchange [25]. Approaches for policies
related to personal data are also discussed in [116, 117], while related work on
personal data and policy schemes is performed in [55].
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Figure 3.1: The Polis architecture.

We currently use schemes that are simple, yet powerful enough, for the current
needs of the Polis prototype. Examples of a personal data scheme and a policy,
as used in Polis, are shown in Figure 3.2.

There are eight general categories of personal data in Polis, organized hierar-
chically, namely Name, BDate, Cert, Skill, Characteristic, Home-Info, Business-
Info and CreditCard. Each of them has one or more subcategories. The terminol-
ogy used is based on P3P for the user information part, with the addition of the
financial information (CreditCard) taken from CPExchange, plus the extra per-
sonal information fields (Skill and Characteristic). Each entity stores its personal
data in a local XML document.

The components of a policy are the following:

• Principals: The Polis-entities.

• Data: Every single item of a user’s (Polis-entity) personal data.

• Purposes: The set of purposes that entitle principals to retrieve data.

• Usage restrictions: Additional restrictions exist that limit access rights to a
specific number of accesses or a specific time interval, or both.
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Policy

<User Enabled="true" Entity=" eshop">
 <Name>
  <Given>
    <Permissions>
      <License Purpose="shipping">
        <GrantAccess>true</GrantAccess>
        <DateTime>
          <Start>2008-01-01 00:00:00</Start>
          <End>2008-12-31 23:59:59</End>
        </DateTime>
      </License>
      <License Purpose="billing">
        <Count>3</Count>
        <DateTime>
          <Start>2008-01-01 00:00:00</Start>
          <End>2008-12-31 23:59:59</End>
        </DateTime>
      </License>
        ...
    </Permissions>
  </Given>
 </Name>
</User>

Personal Data

<User>
 <Name>
   <Given>John</Given>
   <Family>Doe</Family>
 </Name>
 <Home-Info>
   <Postal>
     <Street>Nowhere Street 001</Street>
     <City>Deadend</City>
     <StateProv>Ouitcy</StateProv>
     <PostalCode>11111</PostalCode>
     <Organization>DIPH</Organization>
     <Country>Neverland</Country>
   </Postal>
   <Telecom>
      ...
   </Telecom>
 </Home-Info>
</User>

Figure 3.2: Examples of a personal data scheme and a policy.

Other important concepts of Polis are the licence and the contract. A licence
comprises of the data involved, the valid purposes that allow data retrieval, as
well as the rules to provide either full or restricted access. The use of licences
to protect personal data is discussed in [37, 123, 83]. A contract concerns two
principals and an arbitrary set of licences. An agent can sign any number of
contracts with an arbitrary number of entities.

3.4 In Defense of the Polis Approach
The central assumption in the described personal data management approach

is that personal data can only be stored at the owner’s side. One may dismiss
this as an unrealistic hypothesis and contend that we cannot count on users to
abide by the Polis principle. One may also doubt that there are any incentives to
adopt an approach like Polis, especially for the service providers.

We are well aware that Polis specifies an extreme approach for the manage-
ment of personal data. However, Polis is meant to provide proof of concept that
personal data management can be fair, privacy respecting and more effective than
current practices. What makes the Polis approach possible is that the recent sci-
entific and technological developments and especially the universal acceptance
of the Internet have prepared the ground for citizen-centric applications. At the
same time, the powerful surveillance and data management tools have contributed
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to making privacy threats and personal data misuse one of the most important
problems in the electronic world.

For the above reasons, we believe that the conditions are mature for inves-
tigating alternative paradigms in the management of personal data. The new
paradigms should enhance the individuals’ control over their personal data. In
this context we designed, implemented and evaluated the Polis platform. There is
no doubt, that much more has to be done for a solution like Polis to find its way
to practice. However, this work constitutes a confirmation that such a solution is
feasible.

With Polis we aim at providing a consumer-led solution for personal data
management to be used instead of the current company-centric approach. We
would like to point out an interesting analogy of the Polis-proposed switch in the
current practices in the field of personal data management with another proposed
switch in the field of identity management. According to the Crosby report [47]
we should focus on identity assurance instead of identity management:

At an early stage, we recognized that consumers constitute the
common ground between the public and private sectors. And our fo-
cus switched from “ID management” to “ID assurance”. The expres-
sion “ID management” suggests data sharing and database consoli-
dation, concepts which principally serve the interests of the owner of
the database, for example the Government or the banks. Whereas we
think of “ID assurance” as a consumer-led concept, a process that
meets an important consumer need without necessarily providing any
spin-off benefits to the owner of any database [47].

The Crosby report [47] was published in March 2008 after we had designed and
built the Polis prototype. We consider it very encouraging that positions about
consumer-led solutions are expressed within a very applied context, like the Forum
on Identity Management which prepared the report.

3.5 Incentives and Objections
In this Section we discuss incentives and objections for the Polis approach and

provide arguments that the Polis solution can be beneficial not only to individuals
but also to (well meaning) shops.

The fact that a Polis-user’s personal data must be retrieved from the owner’s
side every time it is needed, automatically fulfills many critical requirements
found in FIP-like regulations. Moreover, the way the Polis framework can be
integrated into database management systems automatically fulfills the require-
ments of Hippocratic databases [9]. Besides individuals, shops can also obtain
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important benefits from the adoption of Polis, like a more privacy-friendly profile,
simplified data maintenance and data cleansing, as well as significantly reduced
responsibility for the safety of customers’ personal data.

3.5.1 Incentives for Individuals
1. Polis-users maintain maximum control over their personal data. They are

able to monitor, at any point in time, all the contracts they have signed,
as well as the time, purpose and principal of each data item access has
taken place. Unlike the Polis approach, current practices result in inability
to keep track of where one’s personal data reside and how often they are
being accessed.

2. Individuals can trivially exercise their right to up-to-date personal data. A
user has simply to update his locally stored record. Each time a company
wants to access it, it will be retrieved on-the-fly from the person’s agent
and not from the company’s outdated database. Consider an individual
who changes his address or telephone number. With current practices, the
individual has to recall every peer that rightfully possesses this information
and go through a record update procedure for each such peer.

3. Individuals can handle all kinds of privacy-related rights and preferences
through their Polis-agent. To this end, a unified user interface is being used,
while personal data disclosure takes place through a clear data flow. These
attributes are absolute requirements for the effective privacy-enhanced man-
agement of personal data [129].

4. The risk that the privacy of the individual is violated due to data breaches
from company databases is significantly reduced. Just like credit cards, Polis-
contracts can be canceled to become useless to invaders. Even if a company
does not realize that its database has been compromised, invaders will have
to acquire the company’s private key, in order to be able to use the stolen
contracts. Even in that case, the invaders will only have access to the par-
ticular data that the contracts authorize this company for. Furthermore,
the data owner will be able to know what data has leaked and when this
happened.

5. Privacy-concerned individuals will no longer have to choose between either
giving away their personal data or not conducting an electronic transaction.
Nowadays individuals suffer the coercion that occurs when there is only
one reasonable way for them to receive certain needed services or informa-
tion [141], i.e., by giving away their personal data. Furthermore, according
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to Acquisti in [3]: “... as merchants decide against offering anonymizing
technologies to their customers, the privacy concerned customers choose
not to purchase on-line, or to purchase less. A latent, potentially large mar-
ket demand remains therefore unsatisfied”. We believe that approaches like
Polis can offer a viable alternative to current practices for personal data
management.

3.5.2 Incentives for Service Providers
1. The customer’s personal data in the shop’s database remains always up-to-

date. In addition, this is accomplished without any maintenance costs for
the shop.

2. The use of Polis contributes to improved data quality and can simplify the
data cleansing task. Data cleansing is the act of detecting and removing
and/or correcting a database’s dirty data (i.e., data that is incorrect, out-
of-date, redundant, incomplete, or formatted incorrectly). Data quality is
a critical factor for the success of enterprise intelligence initiatives and can
incur costs and delays to company operations [167, 202].

3. Polis releases the shop from the burden and responsibility of keeping cus-
tomer data safe. The shop is freed from a set of serious responsibilities for
protecting customers’ personal data and the risk of being considered liable
for serious data breaches. Incidents of intentional or unintentional data
breaches are unfortunately quite common and a reasonable worry is that
a lot of them never reach the attention of the media. Some representative
examples of such situations are the Choicepoint case, a data broker who
sold private records of over 150,000 Americans to a group of criminals in
2005 [44], the incident that took place in the UK, where two computer discs
containing the personal data of 25 million citizens were lost in the post [10],
as well as the recent Deutsche Telecom incidents [171].

4. Polis promotes a more privacy-friendly image for the service providers that
adopt it. The commitment that the shop does not store any personal data
locally is an appealing argument for privacy-sensitive customers.

5. Polis can be integrated into a company’s existing information system. As
we illustrate in Section 3.7, Polis can naturally handle heterogeneous sets
of customers, consisting of both Polis and conventional ones. This fact re-
moves the counterincentive of companies having to go through a demanding
transition process in order to integrate Polis into their systems. The com-
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pany does not get tied down by Polis into having only Polis users in its
database.

3.5.3 Potential Objections for Individuals
1. Managing a personal agent is by definition a critical task, prone to errors

and omissions by the user. However, being in charge of the data disclosure
process through a unified procedure like Polis, is much more convenient
and effective compared to current practice, as described in incentive for
individuals 3.

2. Considerations about the agent’s security. An individual’s Polis-agent con-
tains critical personal data and digital agreements for data access. Conse-
quently, a production-ready Polis-agent should satisfy high security levels.
We believe that this is a viable task, since the Polis-agent has a precise,
well-defined functionality and can be operated behind firewalls on a user-
controlled computing platform. Moreover, the decentralized approach of
Polis for personal data can also contribute to improved data security, since
invaders find large collections of personal data much more inviting than an
individual’s personal data [144].

3. Polis does not protect individuals from malicious shops that misuse personal
data. Nevertheless, a malicious shop in Polis cannot cause more damage
than it could cause with current practices.

3.5.4 Potential Objections for Service Providers
1. Loosing control of customer data. This objection does not really apply to

the Polis approach since service providers will still have access to the data
they are entitled to. Well-meaning parties will not loose control over their
customer’s data. Internet connection reliability could also be an issue for
Polis, but as already mentioned, it is widely accepted that soon enough,
reliable Internet connectivity will be considered a given. Besides, Polis does
not restrain companies from keeping records of customer’s profiles. These
records will not contain any data of the customer’s offline identity and will
resemble pseudonymous data processing.

2. The adoption of Polis can cause significant overheads to company processes.
The possible delays in data retrieval caused by the employment of Polis
should not be a hindering factor for its adoption. Retrieval of personal
data is neither a task that is carried out frequently, nor a time critical
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process, therefore these delays will not affect the efficiency of the company
procedures.

3. Service providers could be scammed from malicious Polis-users. Polis-contracts
and licences constitute proof that a service provider has the right to access
the specified Polis-user data. Therefore, when needed, a company can resort
to the appropriate actions. The CA or some other designated trusted third
party could be used to settle such cases.

3.5.5 Enforcement and Detection
An important aspect of every (electronic) contract is the ability to verify and

enforce that the parties will not violate its terms. Polis can handle detectable
privacy breaches, i.e., breaches for which data released to the shop finds its way
back to the individual who submitted that information [96]. In this case a Polis
compliant shop must be able to present evidence that those data were rightfully
obtained for the specific purpose, at the specific time, using data licences [37].
A more challenging task would be to detect Polis-shops that leak customer’s
personal information. A relevant problem is discussed in [96].

Due to the very nature of personal data, it seems that once a service provider
possesses some data, there is no technically feasible way for absolute abuse pre-
vention. Consequently, apart from technical measures, we will have to rely on
market, legal and social dynamics for handling personal data properly ([96, 8]
and [103, Section 5.8.5]).

As far as violations from the user’s side are concerned, if the terms of an
agreement are violated and the individual refuses to fulfill his contract defined
obligation of providing personal information, then the service provider can use
his customer-signed license to prove entitlement to access the data.

3.6 Polis Applications
In this Section, we discuss how Polis can be used within common electronic

transactions and present indicative higher level applications that can be built on
top of a decentralized personal data management framework like Polis.

3.6.1 Polis in Common Transactions
Polis can be potentially employed in any transaction where a user has to enter

(some of) his personal data. The overall procedure is outlined below:
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Polis in a transaction. When the user has to fill in a form with his personal
data, he instead provides the contact details of his agent. The agents of the
shop and the user/customer establish an agreement. A successful agreement
grants access to the customer’s private data for the specific data items and
the amount of time needed to complete the transaction. In Figure 3.3 the
procedure of a Polis-transaction with an e-shop is detailed.

This procedure can be used for registrations at e-shops, portals and other online
services. In general, any application that involves personal data, like identity
management systems [163] and e-government platforms can be supported. The
need for privacy protection in e-business applications is stressed in [119]. The ease
of employing Polis lies in the fact that it can work as middleware, which takes
care of the personal data exchange between parties in higher level applications.

Customer Customer
agent

e-shop
agent

e-shop

Time

Objects

send pr ivacy policy

send contract

request
personal data

send reply

send personal data
for purpose execution

send data request

initiate
agent communication

complete and send order form
provide agent details

contract
signing

personal
data

retrieval

Figure 3.3: Polis in transactions with an e-shop.

3.6.2 Prospective Applications for Polis
An infrastructure like Polis can be a realistic step in the direction of effec-

tively controlling personal information. Apart from the direct gains of using Polis
in every day electronic transactions, there are some interesting possibilities for
higher level applications that could utilize it.
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Microtrades and Information Markets. The financial aspects of privacy are
studied in several works like [127, 201, 122, 3]. Polis could be utilized to fa-
cilitate personal data exchange in personal-level microtrades between Polis-
agents. Such an application is examined in [192]. Polis-users can give per-
mission to information gathering companies to access (some of) their per-
sonal data, for an agreed price. Each time a company needs to regain access
to them, the agreed amount of money should be paid. Furthermore, Polis
could provide the ground for more advanced financial applications for per-
sonal data. The market for personal data described by Laudon in [127] is an
example of such applications. In particular, Laudon proposes the so called
National Information Market (NIM), where personal information can be
traded in a National Information Exchange. The adoption of a framework
like Polis would simplify the evolution of NIM-like infrastructures.

Privacy-enhanced ubiquitous computing. Online data of an individual can
be conveyed through his Polis-agent. In this case, Polis could work as an
open architecture for ubiquitous computing applications. For example, dy-
namic location information could be retrieved from the individual’s Polis-
agent, like the rest of his personal data.

3.7 The Polis Prototype
We designed and implemented a Polis prototype with the main objective to

demonstrate that electronic transactions are feasible while personal data remain
only at the owner’s side. Another technical objective of the development of the
Polis prototype was to make its deployment simple and friendly to contemporary
information management practices. We believe that we have fulfilled the above
goals adequately. Furthermore, a fully developed Polis platform should be able to
satisfy the general properties that a privacy technology must have in order to be
considered useful according to [90]. The freely available Polis binaries and online
demos of Polis can be found at the Polis project site [162].

3.7.1 Technologies of the Prototype
The basic technologies used to develop and employ the Polis prototype are:

• The Eclipse IDE and the Java programming language to create portable,
platform independent tools.
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• A Pubic Key Infrastructure (PKI) is used for creating trusted certificates
according to the X.509 standard. For demonstration purposes, an elemen-
tary Polis CA has been developed to be used in experiments. In a real world
application, a commercial CA could be utilized.

• User data, policies and contracts are represented as XML documents.

• The Tor anonymizing infrastructure is used optionally to achieve anonymity
for the clients and/or implement agents as hidden services [54].

• The Derby embedded database server is employed internally by the agent
for its data storage needs.

• Bouncy Castle’s security provider is used for cryptographic primitives.

• The database case study has been implemented on an Oracle database
management server (DBMS). Similar integrations of Polis should be feasible
with other popular DBMSs like IBM DB2 or Microsoft SQL Server.

3.7.2 Deploying the Polis Prototype
In order to deploy Polis:

• Customers install the Polis-agent, store their personal information and pre-
pare the necessary policy templates.

• Companies install the Polis-agent, prepare policy templates and integrate
the agent with the company’s information system. Polis-customers can co-
exist with normal customers at a company side.

3.7.3 Polis Collaborating with a Database Management
System

Polis can be incorporated into the back-office of a company and take care of
the personal data management. This is accomplished by integrating Polis with
the company’s database management system. The basic idea is that personal
data fields do not contain the actual data, instead, a ticket (represented by an
appropriate object) is used to retrieve the data value on the fly. We tested Polis
with an Oracle database server. The approach is illustrated in Figure 3.4.

The integration was straightforward. Two Java Stored Procedures (JSP’s)
and a small set of triggers and database views were sufficient to implement the
connectivity between Polis and the database server. It is noteworthy that, using
simple object-relational features, as well as views and triggers, the Polis enhanced
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Database

Shop Agent Customer Agent

Web Server

Client

Send agent contact details

Polis protocol

Forward agent
contact details

DB - Polis
protocol
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Figure 3.4: A Polis-entities interaction example. The shop uses a Polis-enabled
database for customer registration and for retrieving personal data of customers.

database can be operated as a normal one, while the Polis related operations are
transparent to the database user.

3.7.4 Experimental Evaluation

We prepared an elementary Polis environment with a set of Polis-agents in-
stalled on the local network of our laboratory. A snapshot of a Polis-agent’s GUI
is shown in Figure 3.5. A set of web pages, including web forms and dynamic
web pages, were used to support experiments. The customer database contained
27 customers in total; 11 conventional customers and 16 Polis-customers (4 of
which used Tor hidden services [54] for their agents). We performed an extensive
set of experiments within the above Polis environment. The experiments involved
database operations on tables with Polis data to verify their integration into the
database. In particular, we executed some representative insert and select oper-
ations on the customer table, a join operation between two tables and created
some views in the database. Both Tor-enabled Polis-agents (the agent is accessed
through a Tor hidden service) and conventional Polis agents were tested. As
expected, all the operations were accomplished successfully. Moreover, the Tor-
enabled agents operated indistinguishably from the conventional agents with the
exception of occasional timeouts, due to the Tor network itself.
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Figure 3.5: A Polis-agent’s GUI snapshot.

Figure 3.6: Report from the customer table of a Polis-enabled database. The table
contains both, Polis and non-Polis, users.

3.7.5 A First Case Study

We performed a preliminary case study on the integration of Polis with a
content management system (CMS). More precisely, we integrated Polis with
the Elxis CMS, an open source CMS released under the GNU/GPL license. We
selected Elxis for our case study because it is a fully functional CMS, it is open
source and it supports the Oracle DBMS. A number of extensions exist for Elxis
that enrich its functionality; one of them, the IOS eshop component, turns Elxis
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into an e-shop.

Figure 3.7: The Polis-enabled Elxis CMS instance.

The integration process was straightforward. After less than a man week of
work, a first version of a Polis-enabled Elxis CMS instance was working in beta
status (Figure 3.7). Figure 3.8 shows how the profile of a specific user appears in
the Elxis application, at different time instances. Auditing the user’s Polis-agent
reveals each access to the user’s personal data.

3.8 Conclusions
The evaluation of the Polis prototype and the Polis case study proved the

feasibility of the main Polis approach and confirmed the features of the Polis ap-
proach discussed in Section 3.5. A comparison of the features that are available to
Polis-enabled individuals in contrast to conventional/non Polis-enabled individu-
als of the Elxis CMS-based application is shown in Table 3.1. The table compares
the Polis approach to the current practice in personal data management. To this
end it highlights a set of important advantages/disadvantages for Polis-users of
the Polis-enabled Elxis CMS. The comparison should be valid for a wide range
of possible Polis-enabled e-business applications.

As noted in Section 3.1, to the authors knowledge, there is no approach com-
parable to Polis for managing personal data wholly at the owner’s side. The
closest work is the approach of [133] where the data of individuals resides in a
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(a) The Elxis user profile. (b) The profile after the user
changed his e-mail address.

(c) The profile after the data
license for the telephone field
has expired.

(d) The user’s Polis-agent audit.

Figure 3.8: The profile of a Polis-enabled Elxis user at different time instances
and the corresponding entries in the user’s Polis-agent audit.

Polis-enabled user(s) Conventional user(s)

1 awareness the individual is aware of any access to his data the individual receives no information

2 data opt-out trivial the individual has to contact the Elxis shop

3
specifying 

policies

the individual can specify his own data access policies or 

adopt proven policy templates

the individual has to rely on the company specified 

privacy policy

4 security
the individual is not affected by most types of attacks 

on the Elxis shop

any data leakage from the Elxis shop may affect the 

individual

5 effort the individual has to manage his own data the individual simply gives away his data

6 delay
the data is retrieved from the Polis-agent of the 

individual
data is retrieved from the company database

7 data cleansing trivial (the data is retrieved from the Polis-agent) data entry errors may occur

8 data update trivial (happens implicitly)
the individual has to go through a proprietary 

procedure

Table 3.1: Advantages/disadvantages for Polis-users of the Polis-enabled Elxis
CMS instance.

Discreet-box located at the shop side. However, this case differs from Polis in that
data is not at the premises of the individual. Furthermore, it is more complicated
than Polis and unfortunately we were unable to obtain an implementation for
evaluation/comparison purposes. Other technologies, like IBM’s Tivoli Privacy
Manager, concern the management of customer data within a company, but do
not hand over the control to the actual customer. Such technologies can comple-
ment the Polis approach (by increasing the accountability of the company’s data
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practices) but are not a substitute for it.
Finally, the evaluation of Polis also revealed important improvements that

are possible for the Polis-agent and the accompanying tolls. One improvement
concerns the usability of Polis. In the relevant literature it is pointed out that the
use of an appropriate Graphical User Interface (GUI), that clearly demonstrates
concepts for expressing privacy preferences, is very supportive for effective use of
privacy protection systems [129, 156, 109, 2]. A first tool that we have created is
a Polis Add-on for Firefox, which, amongst other features, alerts the user each
time his personal data are requested (Figure 3.9).

(a) Internet browsing moment of a Polis-user. (b) The user’s data have been requested.

Figure 3.9: The Polis Add-on for Firefox alerts the user when his personal data
are requested.

3.9 Discussion
In this work, we design, implement and evaluate Polis, a personal data man-

agement framework which embodies a fundamental privacy principle: Personal
data of individuals reside only at their side. Polis aims at making storage of per-
sonal data unnecessary for contemporary online transactions to work efficiently.
This way, users will be able to monitor and limit the distribution of their personal
data, according to their needs and preferences. Furthermore, the safety of stored
personal data is enhanced and personal data accuracy is ensured.

In conclusion, this work demonstrates the fact that it is possible to deploy
a privacy-enhancing prototype like Polis, in order to achieve significant privacy
protection, in the current electronic world. We cannot expect Polis to become a
panacea for all kinds of privacy problems. However, we believe that Polis has more
advantages than disadvantages compared to current practices for personal data
management. Finally, it is very encouraging that given one basic assumption, the
transition to a personal data protecting way of conducting online transactions,
can be natural and smooth.
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Privacy-Preserving Solution for
Finding the Nearest Doctor

4.1 Introduction

A very interesting class of personal data is dynamic personal data, such as the
current location of an individual. The recent progress in mobile device technology
and the advances in ubiquitous computing allow individuals to collect and process
such dynamic personal data. At the same time, the protection of this ubiquitous
personal data is extremely critical for the privacy of individuals [59, 58]. This
enables a new class of important applications. Consider, for example, the location
of an expert, and in particular a doctor. In case of an emergency, the distance of
the closest doctor could be live-saving information. In August 2007, in the area
of Alexandroupolis, Greece, a 17-year old boy was seriously injured in his right
leg. Vascular surgery was urgently needed. However, due to several administrative
faults no specialized doctor was available. Even worse, it took a long time until it
became clear that no specialized doctor could be found and only then the boy was
transported to a hospital in Thessaloniki. Unfortunately, due to the long delay
the injured leg had to be amputated. Even with the transport taking place, had
the initial delay to find out where the nearest specialized doctor is been avoided,
the consequences on the boy’s health might have been less serious [194].

In this work, we focus on dynamic personal data and examine the possibility
of development of innovative applications that exploit this kind of data, while
ensuring the privacy of individuals. To this end, we propose the following problem,
called the Nearest Doctor Problem [62, 67] (NDP), to find the nearest doctor
in case of an emergency. In a hypothetical but feasible scenario, each doctor
has a personal agent where his current location is always stored. In case of an
emergency, the agents of all doctors interact to identify the doctor who happens
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to be closer than any other to the emergency location. We assume that the doctors
may be off duty and thus the current location of each doctor is sensitive personal
data that should not be revealed to anyone, including other doctors.

The NDP problem is an example of a privacy-preserving application based
on dynamic personal data; the location of each individual doctor. We propose a
privacy-preserving solution that solves the problem without revealing the loca-
tion of any doctor. The individual who is anonymously identified as the closest
doctor can then reveal his identity and offer his services to the emergency event.
The privacy guarantees of this work concern the current location of each doctor,
which is the only personal information of the participants (doctors) used in the
computation. Our approach solves the NDP problem without any doctor loca-
tion being disclosed; only a small amount of aggregate or anonymous information
about participants distances is leaked.

The solution that we propose for NDP makes use of cryptographic primi-
tives and decentralized computation technologies. A basic assumption is that all
doctors have at their disposal a personal data management agent where their
current location is stored. Each agent is under the control of its owner and all
personal agents are permanently connected to the Internet. We consider this as-
sumption feasible because, on the one hand, most modern smartphones (even low
cost smartphones) are equipped with a GPS which allows the users to monitor
their current location and, on the other hand, the doctor agent can exist in a
cheep, low-energy consuming nettop or possbily even in the ADSL router.

In case of an emergency, the agents of all doctors execute a distributed com-
putation to identify in a cryptographic safe way who is the closest doctor to the
incident. For performance, scalability and fault tolerance reasons and addition-
ally for enhancing privacy, the computation is executed in a fully decentralized
way. The agents/nodes are (self-)organized in a distributed topology. To achieve
this we employ techniques from the field of Peer-to-Peer (P2P) networks. The
use of P2P techniques allows us to satisfy the requirements of high scalability
of the system and to reduce the risk for privacy breaches. We apply techniques
that have been developed in [186] and are based on the well known Chord [189]
architecture for P2P networks.

The NDP problem is an illustrative example of an application where personal
data can be used for a common good (public health) whereas at the same time
the privacy of all involved individuals is preserved. We believe that many new
applications can emerge from the same principle of simultaneously using and
protecting personal data. For example:

• First aid in case of a car emergency. The European Union has launched
the eCall project [81] for dealing with the ability of providing assistance in
case of car emergencies. The project’s goal is to deploy a hardware black
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box installed in vehicles that will send an emergency request in case of an
accident on the road. The request will be transmitted over wireless commu-
nication technologies like GSM and will include information like the GPS
coordinates of the emergency location, airbag deployment and impact sen-
sor information. An additional action could be to search if anyone in the
nearby cars could offer first aid (who would be entitled to offer help in such
cases is an issue that is out of the scope of this work). However, the location
of a vehicle is private information and so the search for nearby cars has to
be done in a privacy-preserving way. An approach like the NDP solution
presented in this work could be used to identify a nearby car. A different
problem, probably easier than NDP, would be to warn all nearby cars to
slow down.

• Police or fire emergency. In case of a police or fire department emergency,
a policeman or a fireguard who is not on duty and happens to be near the
event location, might be able to provide critical services if he is informed
about the emergency. At the same time, since the individual (policeman or
fireguard) is not on duty, the exact location of a person is sensitive personal
data and nobody has the right to know it. A solution like NDP could identify
such an individual (with his consent). The individual would be contacted
by his own agent only if he is the closest person and if he is close enough
to be able to help in such an emergency.

4.2 Related Work
The Active Badge Location System [205] was the first indoor location system

for contacting people in an office environment. The system raised issues on lo-
cation privacy at work. Extensions of the initial system and follow-up projects
like [206] offered enhanced features to the users for controlling the way their lo-
cation data is accessed. However, all these systems assume a trusted server that
manages the location data. A system that assumes a decentralized control of
personal data is the Cricket Location-Support System [164]. Cricket describes an
approach that offers an individual the option to learn his physical location within
a building (that offer the Cricket service). The user can then decide to whom he
discloses his location. This approach offers a better control over who obtains the
location information of the individual. However, if the user wants to actively use
his location information to perform some task, he has to disclose it. An approach
like Cricket could be used to allow individuals to learn their location when they
are within buildings where GPS cannot be used. All the above location systems
are for indoor applications.
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The privacy concerns for applications like NDP are even more critical since
they apply to individuals who may be in their private time and not only at their
office but at any location. Therefore, we present a privacy-preserving solution for
NDP. The solution is based on secure multi-party computations (MPC’s), i.e.,
computations that receive input from two or more parties and calculate the output
without revealing the input of any participant. General models for MPC have
been proposed in the seminal work of Yao [227] and in follow-up works. However,
the general models are practically inefficient. More efficient approaches are being
developed for specific applications, like for example [229, 22]. A first large-scale
and practical application of multi-party computation took place in Denmark in
January 2008 [24]. A centralized approach using four separate servers was used
to implement an electronic double auction that enabled Danish farmers to trade
contracts for sugar beet production on a nation-wide market. The NDP solution
presented in this work is a decentralized, efficient privacy-preserving scheme for
the NDP problem.

4.3 The NDP Problem
In this section we define the Nearest Doctor Problem (NDP). The main goal

of NDP is to find the nearest doctor without violating the privacy of doctors. The
personal data which is needed for the NDP computation are the exact locations
of all doctors. An instance of the NDP problem consists of:

• N doctors D1, D2, ..., DN .

• For i = 1, 2, . . . , N , let Li be the current location of doctor Di. For instance,
the location Li may be the exact GPS location of the doctor, obtained from
a portable GPS device.

• The NDP lookup function: In case of an emergency, (the agents of) all
doctors perform a distributed privacy-preserving computation.

– Input: The location Lem of an emergency.
– Output: At the end of the computation, the doctor who is the nearest

one to the location of the emergency becomes aware of this fact and
can offer his services.

4.4 A Solution for NDP
We describe a distributed privacy-preserving computation for solving the NDP

problem. An overview of the architecture of the solution is presented in Figure 4.1.
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The communication between entities in our architecture is performed over secure
sockets (SSL/TLS) with both server and client authentication enabled. At the
heart of our approach is a cryptographic protocol for a secure distributed com-
putation.

4.4.1 Assumptions
We make the following plausible assumptions:

• Every doctor has a personal data management agent with permanent access
to the Internet.

• The current location of each doctor is stored in his personal agent.

4.4.2 Security Model and Privacy
We first define the security model and the kind of privacy that is achieved

and then proceed with the description of the distributed computation in the
next Section. We will show that the proposed protocol is safe in the Honest-But-
Curious (HBC) model, i.e., the doctors are assumed to follow the protocol steps
but also may try to extract additional information (see details in Section 2.9.1).
The HBC model is commonly used in cryptographic protocols and is well suited
for the NDP problem, since the participants are certified doctors. In Section 4.5.2
we go beyond the HBC model and examine how to handle some cases of malicious
user behavior.

Regarding privacy, the question we will address is how to achieve privacy of
type (b) (see details in Section 2.1.4), that is, how to identify the nearest doctor
without pooling the location data, and in a way that reveals (almost) nothing
else about the distributed computation.

4.4.3 The NDP Service
At the application level, the NDP solution is offered as a service through a

dedicated node, called the NDP Service Gateway (NSG). When an individual is
in an emergency, the following steps take place (Figure 4.2):

• The individual or some authority submits a request with the emergency
incident to the NDP Service Gateway (NSG). The request contains the
current location of the individual (for example, the exact geographic coor-
dinates) and possibly additional information about his identity, his current
condition etc. Note that in the NDP problem, the location of the emergency
is not considered private.
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Figure 4.1: The architecture of NDP solution.

• The NSG is an access point that accepts the request and forwards it to an
agent of the doctor’s community. The agent which receives the request from
the NSG takes the role of the root-node for the particular computation.

• The root-node coordinates a distributed computation that calculates the
distance of the nearest doctor.

• At the end of the distributed computation, the agent of the doctor who is
the nearest to the location of the emergency becomes aware of this fact and
contacts the NSG to declare his readiness to offer help.

4.4.4 Outline of the Distributed Computation
We present a protocol for a secure distributed computation that solves the

NDP problem. The protocol does not disclose the location of any doctor; only a
small amount of aggregate or anonymous information is leaked. The computation
consists of three main phases (Figure 4.2).

• In Phase 1, the closest interval containing at least one doctor is found.

• In Phase 2, the distance of the nearest doctor and an associated random ID
are found.

• Finally, in Phase 3, the doctor who owns the random ID realizes that he is
the nearest doctor and contacts the NSG to offer his help.

We provide a summary of each phase of the computation.
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Figure 4.2: Interaction diagram of a nearest doctor calculation.

• Phase 1

– Input: The location Lem of the emergency.
– Output: An interval I containing the minimum distances in which

there is at least 1 doctor and at most K doctors, where K is a given
constant (e.g. K = 5).

– Description: The NSG chooses a node as the root-node for the par-
ticular computation and sends the location Lem of the emergency to
it. Then, the root-node sends a broadcast message to the agent com-
munity that starts the distributed protocol and initiates Phase 1. The
protocol is executed on a logical binary tree topology that contains all
doctor agents (nodes) as leaves (Figure 4.3) and some of them also act
as intermediate nodes (see Section 4.4.7 for details).
Phase 1 may last for several rounds. In each round, the root-node
collects the (intermediate) result of the computation as an encrypted
message and sends this message to the NSG. The message is encrypted
with the public key of the NSG, which has to be known to all nodes.
Let CountD be the number of distances that belong to the interval of
minimum distances. The NSG decrypts the result and obtains CountD.
If CountD > K, then the computation is repeated in a new round, this
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Broadcast Message

Encrypted Results

N Doctor Agents

Figure 4.3: A binary tree topology.

time within the interval that has been found. This procedure contin-
ues until an interval that contains the closest CountD doctors, where
1 ≤ CountD < K, is found. An example of this procedure where the
appropriate interval is found in two rounds is shown in Figure 4.4.
In subsection 4.4.5 we describe in detail the protocol of Phase 1 and
show that it ensures k-anonymity (see Section 2.1.3.1), where k = N
and N is the number of all nodes in the network, for the participants
of the protocol.

0 15 30 45 60 75

15 18 21 24 27 30

1st Round

2nd Round

Figure 4.4: Example of Phase 1.

• Phase 2

– Input: The interval I from Phase 1.
– Output: The - anonymously collected - exact distances of the CountD

nearest doctors and the associated random ID’s.
– Description: In this phase, the NSG sends the interval I of Phase 1

to the root-node which in turn sends a broadcast message to announce
the interval I to the agents. Each agent whose distance is in the inter-
val I responds by anonymously sending a message to the NSG. The
message is encrypted with the public key of the NSG and contains
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the exact distance of the agent and a random ID (a nonce, i.e., a
number used once). For example, by an universally unique identifier
(UUID) the probability of collisions is practically negligible. Moreover,
even if a collision would occur, the NSG would detect it and repeat
this phase. The anonymous transmission is achieved with onion rout-
ing [169] techniques. More information about onion routing is given in
Section 4.4.6. The NSG collects all anonymous messages and finds the
distance of the nearest doctor and the associated random ID. Since
the messages are anonymously sent, k-anonymity is preserved in this
step; assuming that no background information about the participants
of the computation is available, the privacy of doctors is preserved.

• Phase 3

– Input: The random ID associated with the distance of the nearest
doctor.

– Output: The owner of the random ID realizes that he is the nearest
doctor D∗

n and can contact the NSG.
– Description: The NSG sends a message containing the random ID

of the distance of the nearest doctor to the root-node. The root-node
broadcasts the ID to the agents’ network. The doctor who generated
the ID becomes aware of the fact that he is the nearest doctor and
contacts directly the NSG.

4.4.5 A Privacy Preserving Protocol for Phase 1
We present a cryptographic protocol that finds the first interval of distances

in which there is at least one doctor. The protocol uses a trick to encode dis-
tance values which has been applied in [229] for a secure dynamic programming
protocol. Moreover, the cryptographic protocol uses the ElGamal public key cryp-
tosystem [139] and its homomorphic encryption property which supports multi-
plicative homomorphism (see details in Section 2.5). Other homomorphic public
key cryptosystems like the Paillier cryptosystem [154] can be used in our protocol
in place of ElGamal.

4.4.5.1 The Protocol

The protocol accepts three parameters: the minimum distance minDist, the
maximum distance maxDist and the number n of subintervals. These parameters
are used to partition the interval of distances (minDist,maxDist) into a set
of n consecutive subintervals. For simplicity, we use subintervals of equal size,
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but it is straightforward to adapt the approach for example to geometrically
increasing subintervals. The outcome of the protocol is the first subinterval that
contains (the distance of) at least one doctor. In the protocol, each subinterval
is represented with a ciphertext and the whole set of subintervals is represented
with the ordered list (or tuple) of the corresponding ciphertexts. Overall, each
message has n encrypted numbers, as many as the subintervals into which the
initial interval is partitioned. Such a message containing the ordered list of n
ciphertexts passes through each agent.

Each agent prepares its own ordered list of ciphertexts as follows: For doctor
Di, where i = 1, 2, . . . , N , let ℓi ∈ 1, 2, . . . , n be the number of the subinterval
that contains the distance of the doctor. Then, the ciphertext for the ℓi first
subintervals are encryptions of the number “1” and the ℓi + 1 subinterval is
encryption of a number z, where z > 1 is a fixed value known to all agents.
For example z might be z = 2. For the rest of the n − (ℓi + 1) subintervals the
ciphertexts are encryptions of uniformly chosen random powers of z. An example
of a local message is shown in Figure 4.5.
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Figure 4.5: The local message of a doctor Di.

When the agent receives the accumulated message, it calculates the new accu-
mulated message as the product of the respective ciphertext of the local message
and the accumulated message. The outcome, i.e., the new accumulated message,
is then forwarded to the next node or nodes.

The distributed computation is performed on a logical binary tree topology
in which the leaves of the tree are the N doctors’ agents. The depth of the tree is
⌈log2 N⌉ and so the accumulated outcome is computed with a reduce operation
that requires ⌈log2 N⌉+ 1 parallel computation steps.

The general form of the final accumulated message is shown in Figure 4.6.
Let L be the index of the last ciphertext that is an encryption of the number
“1”. Then, the value of L indicates that the first L − 1 subintervals are empty
(no doctor is located at a distance within these intervals) and subinterval L is
the first non-empty subinterval. The exponent k of the number in the (L+ 1)-th
ciphertext reveals the number of doctors in this subinterval. The ciphertexts of
higher subintervals are encryptions of some random powers of z and are ignored.
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Figure 4.6: The final accumulated message.

The NSG decrypts the final-message and obtains the first non-empty interval and
the number of doctors in it.

4.4.6 Onion Routing
In Phase 2 of the distributed computation we use onion routing [169], a pop-

ular technique for anonymous communication over a network. A simplified de-
scription of onion routing is: A node that wants to send a message to another
node does not send the message directly to its destination. Instead, the sender
chooses a random path that passes through intermediate nodes and terminates at
the destination node. Moreover, the sender encrypts the message repeatedly with
the keys of the intermediate nodes. So the message is packed with multiple layers
of encryption and looks like an “onion”. Each intermediate node that receives
the message, takes away a layer of encryption to reveal routing instructions, and
sends the message to the next router where this process is repeated. This prevents
intermediary nodes from knowing the origin, the destination and the contents of
the message.

The advantage of onion routing is that it is not necessary to trust each coop-
erating onion router (intermediate node); if one or more, but not all, routers are
compromised, the anonymity of the communication is preserved. This is because
each router in an onion routing network accepts messages, re-encrypts them and
then forwards them to another onion router. An attacker with the ability to mon-
itor every onion router in a network might be able to trace the path of a message
through the network, but an attacker with more limited capabilities will have
difficulty even if he controls one or more onion routers on the message’s path.

In order to accomplish the anonymity for sending a message like we described
in the Phase 2 (subsection 4.4.4), one option is to use the Tor network [54], a
widely used, general purpose platform for onion routing. Another option, is to
implement an onion-like or some other anonymity providing mechanism within
the agent community, where each agent forwards its messages through other ran-
dom agents of the agents community. In the current implementation of the NDP
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solution we applied the latter approach (see Section 4.6).

4.4.7 Network Topology

A critical component of the NDP solution is the logical network topology of
the agents. The network topology must be scalable, reliable, and should support
privacy-preserving communications and computations of the agents. We address
the above requirements by employing networking technologies from the field of
Peer-to-Peer (P2P) networks. In particular, we apply techniques that have been
developed in [186] and are based on the well known Chord [189] topology for P2P
networks.

The network topology has the following features: The agents are organized
into a logical ring that serves as the backbone of the topology. Each node in the
ring, knows its predecessor and its successor. Actually, for increased tolerance
to node changes/failures, each node keeps links to a set of successors. In addi-
tion, each node maintains a set of links, called fingers, to nodes at geometrically
increasing distances in the ring. These links allow the network to behave as a log-
ical binary tree topology. An example of the embedding of a binary tree topology
into the logical ring of the Chord-like architecture is shown in Figure 4.7. Similar
approaches to embed a virtual tree topology on a chord P2P network are used
for example in [115].

The proposed network architecture provides a fully decentralized and scal-
able network topology for the doctors’ agents. The links of existing nodes and
the establishment of the links of new nodes are accomplished with stabilization
procedures that are similar to the typical stabilization procedures of Chord P2P
networks.

4.5 Preserving Privacy

In this Section, we examine the security properties of the proposed NDP
protocol. We first consider the Honest-But-Curious (HBC) model and show that
the protocol preserves the location privacy of the doctors in this model; only a
small amount of aggregate or anonymous information is leaked. Then, we examine
scenarios with malicious users and discuss how these can be handled. More details
about the meaning of security models you can find in Section 2.9.1. To prove
that the protocol preserves privacy we show that it satisfies the criterion of k-
anonymity (see Section 2.1.3.1).
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Figure 4.7: Embedding of a binary tree into the logical ring.

4.5.1 Privacy in the HBC Model
We first note that the doctors do not use their location in the protocol but

only their distance to the location of the emergency. Then, the security of the
ElGamal cryptosystem and its homomorphic property ensure that the distances
cannot be associated with any particular doctor. Finally, the security of onion
routing protects the anonymity of the nearest doctors that disclose their distances
in Phase 2. Below, we discuss in detail the preservation of privacy in each Phase
of the distributed computation.

• Phase 1

– Each doctor uses his private location and the location of the emergency
to calculate his distance to the emergency event. Consequently, only
the distance is used in the distributed computation, not the private
location itself. Moreover, the doctor does not use the exact value of
his distance but only the subinterval in which this distance belongs.

– Each agent cannot obtain information from the accumulated message
that it receives, because the contents of the message are encrypted
with the public key of the NSG using ElGamal encryption.

– All ciphertexts of the accumulated message are altered by each node,
even the ones that are multiplied with an encryption of the number
“1”.

– At the end of each round, the final accumulated message reveals the
number of doctors in the first interval that contains at least one doctor.
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No exact location and not even any exact distance is disclosed. More-
over, since no individual doctor can be associated with the doctors in
this first interval, Phase 1 preserves k-anonymity, where k is equal to
N , the total number of agents in the network. Thus, the aggregate
information disclosed in Phase 1 does not violate the location privacy
of the doctors.

– Note, that each round of Phase 1 is a secure multi-party computation
that reveals to the NSG the first non-empty interval and the number
of doctors in it. This is an immediate consequence of the security
of the ElGamal cryptosystem. Moreover, the first non-empty interval
of each round is announced to all doctors (either in Phase 1 or in
Phase 2). In conclusion, the outcomes of each round of Phase 1 leaks
a small amount of aggregate information about the distances of the
participating doctors (Table 4.1).

• Phase 2

– We make the plausible assumption that Onion Routing works reliably.
More details on the security of Onion Routing can be found in [54].
Then, the security features of Onion Routing ensure that the exact
distances of the doctors in the first interval are anonymously sent to
the NSG. Hence, k-anonymity for k = N is preserved in this phase too.

– We consider the anonymous disclosure of exact distances an acceptable
tradeoff between efficiency and privacy protection. However, there is
the possibility that even an honest NSG may attempt to combine back-
ground knowledge with the specific distances to try to identify doctors
who live at such a distance from the emergency location. This leak-
age could be mitigated or avoided if we used less accurate distances
in Phase 2 or a more complex protocol among the closest CountD
doctors’ agents (see Section 4.5.2.2).

• Phase 3

– In this phase, the random ID associated with the closest distance is
announced to the network. The agent that recognizes that it is the
owner of this ID can now directly contact the NSG and reveal its
identity. The ID does not leak information to any other node.

A summary of the critical data items of our solution and to which of the
participating entities these items are disclosed, is given in Table 4.1.
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Doctors
``````````````̀Data Items

Participants NSG All CountD-closest

Doctors’ Location 7 7 7

Emergency Location 3 3 3

Phase 1 Closest Interval 3 3 3

(each round) Number of CountD 3 7 7

Phase 2 Exact CountD Distances 3 7 7

Phase 3 Nearest Doctor D∗
n 3 7 7

Table 4.1: The scope (columns) of the critical data items (rows).

4.5.2 Malicious Users
In this section, we examine scenarios with malicious users and discuss how and

to what extend the NDP protocol can handle them. The classic results [93, 92] on
secure multi-party computation show how to convert a secure multi-party com-
putation of the semi-honest model into a computation in the malicious model.
However, the conversion introduces a significant computational overhead since
it requires each participant to validate every message by supplying an appropri-
ate zero-knowledge proof that the message is consistent with the protocol spec-
ification. In general, a zero-knowledge proof [166] is an interactive method for
one party to prove to another that a statement is true, without revealing any-
thing other than the veracity of the statement. This overhead caused by the
zero-knowledge proofs raises important practical issues, especially for distributed
computations with a large number of nodes as in the case of the NDP problem.

Instead of using a heavy general conversion technique to handle malicious
users, one may consider deriving some proprietary approach for the NDP pro-
tocol. In the context of homomorphic encryption there are examples of practi-
cal problem-specific solutions that can tolerate malicious behavior. For example,
in [45, 50] zero-knowledge based proofs are used within a secure multi-party com-
putation with homomorphic encryption to handle malicious users. However, the
above approaches require each node to publish the encryptions of its values to all
other nodes of the doctors’ network and to execute all the products of ciphertexts.
In our case, this is impractical due to the large number of agents.

A straightforward approach could be to handle the complexity of the computa-
tionally demanding protocol for malicious nodes by executing the protocol within
smaller user groups of NDP nodes (Figure 4.8). Such a hybrid solution could
be used to assure the tolerance of the NDP protocol against a small number of
malicious users. We will describe such an approach in Section 4.5.2.1. Moreover,
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in Section 4.5.2.2 we present an improvement of Phase 2 to avoid the anonymous
disclosure of the smallest exact distances. However, we first examine three specific
examples of malicious behavior and then we consider the hybrid approach as a
more general solution to handle malicious users in the NDP protocol.

We shortly discuss the case of a malicious NSG and then proceed to scenarios
with malicious nodes. A malicious NSG could collude with any malicious agents
to uncover data of neighboring (in a particular computation) agents. Fortunately,
such a malicious NSG behavior can be effectively handled by employing a thresh-
old decryption model [86, 43] for the ElGamal Cryptosystem. Using threshold
decryption is a classic defense in e-voting systems with purpose to protect their
voting process against malicious coordinators, and can be applied within our so-
lution too. In such a case, the NSG instead of merely decrypting the encrypted
result, uses n parties (the NSG could be one of them) with their secret keys,
so that at least t parties, where t ≤ n, are required to decrypt the final result.
We will not further address malicious NSG behavior in this work. Instead, we
focus on the community of the doctor agents and examine the following cases of
malicious agent behavior.

• Case 1: A user (doctor agent) maliciously or unintentionally reports an
erroneous close distance to the emergency incident. As a consequence, this
doctor might be wrongly chosen as the nearest doctor and the actual nearest
doctor might not be informed to offer his help.

A possible solution for this case is to modify the NDP computation of Phase
1 to find a larger number of nearest doctors. For example, the protocol
could search for the CountD nearest doctors, where m is a fixed number
and m ≤ CountD < K. That is, if the current closest interval contains less
than m doctors, then Phase 1 will continue by extending the interval to
include larger distances until CountD is within the specified range. Note
that a malicious node would presumably not show up in Phase 3 of the
NDP protocol where it has to reveal its identity. Thus, when there are at
most m − 1 malicious users, the NDP protocol will succeed in finding the
actual nearest doctor.

• Case 2: A malicious user incorrectly modifies or replaces ciphertexts in
the accumulated message of distance intervals of Phase 1. In other words,
the user maliciously modifies the accumulated data from the inputs of the
preceding users. Note that none of the doctors’ agents can see the contents
of the accumulated message but it can change the accumulated message or
replace any of its items when the accumulated message is in the possession
of the agent. Consequently, the NSG may obtain at the end of the round a
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wrong number of doctors in the nearest distance interval or even a wrong
nearest distance interval.
The impact of the malicious modification of the ciphertexts depends on
many parameters, including the location of the malicious user in the virtual
tree of the distributed computation and the difference between the correct
and the falsified contents of the ciphertext. The most likely consequence is
that the NSG may wrongly decide to proceed or not to Phase 2. In Phase
2 it will become evident that something is wrong if the number of doctors
that anonymously reveal their exact distances or the distances themselves
do not satisfy the results of Phase 1.

• Case 3: A node of the virtual tree topology does not correctly execute
the communication operations of the protocol. By definition, a malicious
node may not follow the communication steps of the protocol. For example,
the node may receive the accumulated message during the execution of
protocol and then not forward this message to next nodes of tree topology.
As a result, the distributed computation will not run correctly.
This type of misbehavior can be handled at the network topology level.
A fault-tolerant network topology can detect if the communication is de-
layed at some nodes and handle these cases as node failures. In the current
prototype, we assume that all nodes of the network topology are reliable.

4.5.2.1 A Hybrid Approach

In the hybrid approach the agents are organized into groups, where each group
consists of R agents. As shown in Figure 4.8, each group of agents corresponds
to a vertex of the virtual tree topology. The value of R determines the level of
tolerance that we wish to achieve against malicious users. We present the hybrid
approach in order to give some hints about how to address malicious user behavior
in the context of NDP; we do not provide the full details of such a solution.

Within each group of nodes, we can apply a zero-knowledge proof that an
encrypted message lies in a given set of messages against malicious behavior. This
type of zero-knowledge proofs have been successfully applied in secure e-voting
systems [46, 29], and it is straightforward to apply them within our protocol.
With such an approach, the R nodes of each group would exchange the encrypted
representations of their distance and each agent would verify that the encrypted
values of subintervals lie in the public set S = {1, z}. No information about
the actual value of the encrypted messages would be revealed. We note that we
may have to adapt the form of the local encrypted messages in order to simplify
the zero-knowledge proofs within the groups. For example, an appropriate form
for the local message could be (1, . . . , 1, z, 1, . . . , 1). Such an approach will cause
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Figure 4.8: The execution of Phase 1 on groups of R = 3 nodes.

higher leakage of aggregate data to the NSG but allows us to simplify the zero-
knowledge proof. Since each group of nodes is a clique graph with R(R − 1)/2
edges and each pair has to exchange a constant number of messages, the overall
verification will require O(R2) communications between the nodes.

Next, each node of the group independently calculates the accumulated mes-
sage of the group-node and sends its output to each of the nodes of the parent
vertex in the virtual topology. This step requires R2 messages. Finally, each of
the agents of the parent vertex independently verifies the correctness of the re-
ceived messages by checking if the received partial results from the R nodes of
the child vertex are identical. Overall, each node of a group will receive messages
from 3R− 1 nodes and send messages to 2R− 1 nodes.

If the results that a node receives from the nodes of the child vertex are not
identical, this indicates the existence of malicious behavior. The hybrid scheme
will successfully detect such malicious behavior if there are at most R−1 malicious
nodes. Actually, even a much larger number of malicious nodes will be detected
as long as at most R − 1 malicious nodes belong to the same group. Moreover,
if at least R/2 + 1 nodes of a child vertex give the same results, then the nodes
of the parent vertex may resolve this issue with a simple majority criterion and
proceed with the calculations of the NDP protocol.
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4.5.2.2 An Improvement for Phase 2

As noted earlier, there is a leakage of data to the NSG in Phase 2, namely
the disclosure of the exact distances of the CountD nearest doctors. Even though
the distances are reported anonymously, if the NSG combines them with back-
ground knowledge for example on the addresses of the doctors, it may potentially
identify some of the doctors. We describe a sketch of a solution to the above
problem. The solution that we propose is based on a cryptographic protocol – ci-
phertext comparison [160] – that can compare two ciphertexts without revealing
the two encrypted messages. The protocol is valid both in the Honest-But-Curious
(HBC) and the Malicious model. The main idea is that a (small) set of indepen-
dent parties (instead of a single NSG) share the responsibility to coordinate the
comparison process and that the correctness of the comparison can be publicly
verified.

In the improved Phase 2, the only modification would be that the doctors’
agents would have to encrypt their exact distances in an appropriate form given
in [160]. This encryption is performed with the common public key of the inde-
pendent parties. In our case where we have CountD encrypted distances, in total
CountD − 1 secure comparisons are required to find the encryption of the small-
est distance or CountD · log(CountD) secure comparisons to sort the encrypted
distances. Finally, the random ID of the doctor corresponding to the encrypted
smallest distance can then be used in Phase 3. The above comparison process
remains efficient for a small number of CountD distances.

4.6 Experimental Results
To confirm the feasibility of the NDP solution and examine its practical effi-

ciency we developed and evaluated an NDP prototype. The application is devel-
oped in Java and for the cryptographic primitives the Bouncycastle [104] library
is used. In the prototype, the current location of each doctor is stored in his
personal data management agent, which is an adaptation of the personal agents
of the Polis platform (see Chapter 3). The personal agents use production-ready
cryptographic libraries and employ 1024 bits RSA X.509 certificates. The commu-
nication between agents is performed over secure sockets (SSL/TLS) with both
client and server authentication (see details in Sections 2.7 and 2.8).

In the next subsections, we first describe a toy-case example with four doctor
agents to illustrate the process of execution of the NDP protocol. Then, we present
a set of larger scale experiments with up to 300 doctor agents. In both experi-
ments, we implemented an anonymity mechanism for Phase 2. For simplicity, we
used a simple Crowds-like [170] approach where each message is initially passed
to a random agent which in turn randomly decides either to forward the message

72



Chapter 4: Nearest Doctor Problem (NDP)

to the receiver or to another randomly chosen agent. More precisely, each doctor
agent whose distance belongs to the closest interval identified in Phase 1, prepares
a message with its exact distance and encrypts it with the public key of the NSG.
The agent then sends this message to another, random agent of the agent com-
munity. Let’s call the recipient, an intermediate agent. Each intermediate agent
uses the multiplicative homomorphic property to multiply the encrypted mes-
sage with the number “1”. This changes the ciphertext but leaves the encrypted
plaintext unchanged. Then, with probability “1/3” the intermediate agent for-
wards the message to the NSG and with probability “2/3” to another, random,
intermediate agent. Since we assume Honest-But-Curious nodes this Crowds-like
algorithm seems to protect the anonymity of the original sender. However, we do
not claim strong security properties of the above algorithm; it simply serves the
experimental evaluation of the NDP solution.

4.6.1 A Toy-Case Experiment
In this experiment, the NSG submits an emergency event to a community of

four doctor agents. The NDP protocol is then used to identify the doctor who is
the closest to the emergency. The doctor agents are assumed to be Honest-But-
Curious (HBC) and there are no network or agent failures. The agent community
is organized into a simple ring topology.

The experiment covers a hypothetic square area of 10000 km2. The locations
of the doctors and the emergency are chosen independently and uniformly at
random in the above area. Each agent chooses its random location and the NSG
chooses a random location for the emergency event. The NDP solution tries to
find the nearest doctor within a distance of at most 75km from the emergency
location. The values of the internal parameters of the NDP solution are K = 2
and z = 2, where K is the upper bound of the closest doctors of Phase 1 and z
is a fixed number used in the encryptions of the intervals.

The NSG chooses an agent node, in this case “Agent_1”, as the root-node,
and forwards the location of the emergency event to this node. The coordinates of
the location of the emergency of the experiment are Lem = [41.140110, 24.913660]
and the exact distances of the 4 agents from this emergency location are:

Agent_1 ⇒ 17.544817 km
Agent_2 ⇒ 53.157742 km
Agent_3 ⇒ 25.797003 km
Agent_4 ⇒ 66.221868 km

The cryptographic protocol starts with Phase 1. In the first round the interval
of distances (in km) [0, 75] is partitioned into 5 equal intervals. As a result, the
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encrypted representation of agents’ distance (in km) is:

0−15 15−30 30−45 45−60 60−75

Agent_1 E(1) E(1) E(2) E(25) E(23)

Agent_2 E(1) E(1) E(1) E(1) E(2)

Agent_3 E(1) E(1) E(2) E(26) E(29)

Agent_4 E(1) E(1) E(1) E(1) E(1)

The final accumulated message in round 1 is shown below:

0−15 15−30 30−45 45−60 60−75

result E(1) E(1) E(22) E(211) E(213)

The decryption of the ciphertexts of the final message reveals that the first
non-empty interval is [15, 30) and that this interval contains two doctors. Since the
number of doctors in the first interval is equal or less than K, Phase 1 terminates.
In Phase 2, the root-node broadcasts the first interval to all nodes. Every node
with a distance in this interval, anonymously sends its exact distance together
with a random ID nonce (number used once) to the NSG.

The NSG receives the following two exact distances and the associated random
ID numbers:

[Dist = 17.544817, ID = 56770656]
[Dist = 25.797003, ID = 45413392]

The NSG finds that the minimum distance is 17.544817 km. In Phase 3, the
NSG sends the random ID nonce that is associated with the minimum distance
to the root-node, which in turn broadcasts this ID to the doctors’ network.

ID : 56770656

Finally, “Agent_1” realizes that it is the nearest doctor and directly contacts
the NSG to offer its services. A snapshot of the application GUI during the
experiment is shown in Figure 4.9.

4.6.2 The Large-Scale Experiment
We also conducted a set of experiments with a gradually increasing number of

agents from 50 to up to 300 agents. Also in this case, we assume that the doctor
agents are Honest-But-Curious (HBC) and there are no network or agent failures.
The experiments were executed on a 100 Mbps network with 30 workstations,
each with a CPU Intel Core 2 Quad Q8300 processor at 2.5 GHz and 2 GB
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Figure 4.9: A snapshot of the NSG (NDP Service Gateway).

RAM. The agents were distributed evenly on the available workstations so that
each workstation ran at most 10 agents. Every measurement was averaged on 10
independent executions of the experiment, each with different random values for
the location of emergency and the locations of doctors.

The network topology is a logical binary tree with root the root-node of the
particular NDP computation. At this stage of the prototype development, the tree
topology is build by the NSG or by a Directory Service (DS) where every active
agent registers itself. Consequently, we do not rely on the Chord-like network to
build the tree topology as a full-blown implementation of the NDP solution would
do.

The measurements concern the execution time of each phase of the NDP pro-
tocol and the total run time. We present the results and derive conclusions about
the efficiency and the scalability of the solution. In Figure 4.10, the execution
times of a single run of Phase 1 are shown. Recall that Phase 1 may be executed
more than once, depending on how many doctors are found in the closest non-
empty interval. In this figure we focus on the time for a single round of Phase
1. The total run-time for all repetitions of Phase 1 in an NDP computation is
taken into account in Figure 4.12 that presents running times of the complete
NDP computation.
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Figure 4.10: Execution times of Phase 1 with respect to the number of agents.

From Figure 4.10 we conclude that the execution time of Phase 1 depends
almost linearly on the depth of tree topology of the distributed computation. For
example, for an NDP computation with 100 agents the depth of the underlying
tree topology is ⌈log2 100⌉ = 7, whereas for computations with 150, 200 or 250
agents the depth is ⌈log2 150⌉ = ⌈log2 200⌉ = ⌈log2 250⌉ = 8. The results show
that Phase 1 scales well as the number of agents increases.

Figures 4.11a and 4.11b show the execution times of Phases 2 and 3 respec-
tively. For Phase 2, the results show that its execution time does not seem to
depend on the number of agents. This is rather expected, since the workload of
Phase 2 mainly depends on the number of nearest doctors accrued in Phase 1 and
how fast these doctors can anonymously send their exact distances to the NSG.
The results of Phase 3 show that the execution time of this phase is dominated
by a broadcast operation, which in turn depends on the depth of the virtual tree
topology.

Finally, in Figure 4.12 the overall results are presented. In particular, the
execution time of Phase 1 (of a single execution of the phase), Phase 2, Phase 3,
the sum of the previous times and the total time of the whole NDP computation
are presented. Note that the total time may differ from the sum of the three
phases. This happens in cases where Phase 1 has to be executed more than once
within the same computation.

The general conclusions of this large scale experiment is that the NDP protocol
can be successfully performed on a virtual tree topology and that, as expected,
the execution times seem to increase linearly with the depth of tree topology
and thus logarithmically with the number of nodes. Based on the design of the
NDP protocol and the above experimental results, we are confident that the
NDP solution can scale well to handle much larger communities with thousands
of nodes.
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Figure 4.11: Execution times of Phase 2 and Phase 3 with respect to the number
of agents.
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Figure 4.12: Execution times of Phase 1, Phase 2, Phase 3, sum of 3 Phases and
total time with respect to the number of agents.

4.7 Discussion
The development, analysis and evaluation of the NDP prototype confirmed

the feasibility and the effectiveness of the NDP solution. However, there are still
important open questions, technical and non-technical. A critical technical issue
is the robustness of the network topology against failures. In a community with
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a large number of nodes, the short-term or long-term failure of individual nodes
or network links will be a common event, and the P2P-based network topology
should be able to handle these failures. A lookup of the nearest doctor may
take too long if the size of the doctors’ community is large and the network is
currently recovering from some failure. Furthermore, a temporary node or link
failure, which becomes more likely as the network size increases, can disrupt
the whole distributed computation. We believe that a fully developed network
platform based on Chord-like peer to peer networking techniques can address
these technical issues of the network topology.

At the service level, the NDP solution could be improved with a more ap-
propriate distance metric. In the prototype, we used the great-circle distance.
However, for inhabited areas and not only, a much better distance metric could
be the time that each doctor needs to reach to the emergency location. For ex-
ample, a navigation software tool running at the agents’ side could use the GPS
location, updated maps and possibly the current traffic conditions to calculate
an estimate of the time that the doctor will need to arrive at the location of the
emergency. Such a distance metric would be much more effective for the NDP
problem.

Another important point is that, even though wireless communication options
like 3G, Wi-Fi and Satellite communications are now widely available, there are
still technical and economic issues. For instance, a personal mobile device will have
to regularly update the doctor’s location at his personal data management agent.
This may cause the energy consumption of the mobile device and the cost for the
wireless data transfer to become prohibitive. However, the current momentum of
mobile device technology and telecommunications services predispose that these
issues will soon be overcome.

Finally, we would like to emphasize an issue, which may not be technical, but
is of equal importance for the acceptance of a solution like NDP by real doctor
communities or other communities that could use such a system. Clearly, many
individuals may not be eager to adopt a technology like the NDP solution in their
everyday life. However, such difficulties commonly exist for every new technology.
We believe that the doctors’ community should not feel threatened in any way
by an application like the NDP solution, because:

1. The privacy of each doctor’s location is preserved and under the absolute
control of the doctor.

2. The solution is simple and cheap enough to be feasible even with current
information and communication technologies (ICT).

3. The benefits of an application like NDP for the public well-being are prac-
tically immeasurable.
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4.8 Conclusion
In this work, we proposed the use of the current location of each doctor for sup-

porting services for the public well-being. For this reason, we define the Nearest
Doctor Problem (NDP) and make a first attempt to present an efficient privacy-
preserving protocol for solving it. The proposed scheme utilizes the doctors’ per-
sonal data (location) while ensuring their privacy. The protection of privacy is
achieved by using cryptographic techniques and performing a distributed com-
putation within a network of personal agents. Furthermore, we studied how our
proposed approach can be applied under malicious users and suggested possible
countermeasures. For the feasibility of our approach, we developed a prototype
implementation and confirmed the viability and the efficiency of the proposed
solution by conducting a set of experiments with up to several hundred doctor
agents.

In our view, the NDP solution for offering help in case of an emergency should
be considered a complement to existing emergency handling services. The NDP
solution would probably make a difference only in some cases of emergencies.
However, even a small number of successful applications of NDP, justifies, at
least in our view, the approach.

A future direction for the improvement of our solution could be to give a
more precise security and privacy analysis of our protocol. Even though only a
small amount of aggregate or anonymous information is leaked by the intermedi-
ate results of the computation, a formal estimation of this leakage would be an
important step for this work. Even more interesting would be to obtain a solution
with no side-leakage at all; essentially a secure multi-party computation for the
NDP problem. Finally, an interesting extension of the NDP problem would be to
require the location of the emergency to be private, too.
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Chapter 5

Privacy-Preserving Management
and Statistical Analysis of
Ubiquitous Health Monitoring
Data

5.1 Introduction
The requirement to provide health care to special groups of people who have

the need of continuous health monitoring is an integral part of today’s society.
Moreover, the number of people who need such health monitoring services is in-
creasing. An important reason for this is the aging of the populations, which
constitutes a social and economical challenge for the whole world. Related re-
searches which have been carried out both in the European Union [230] and the
United States [106] indicate that the number of people over the age of 65 is in-
creasing; a similar increase is expected to take place throughout the developed
world. Many elderly people suffer from chronic diseases that require health care
and frequent visits to hospitals. For people of this category, it is important to
continuously monitor the state of their health. Effective monitoring of the health
state can improve the quality of the patients’ life or even save their life, while
simultaneously reducing the cost of health care.

The rapid development of the wearable sensors technology led to the appear-
ance and the implementation of prototype Ubiquitous Health Monitoring Systems
(UHMS’s) [153, 71, 224]. Moreover, there is a plethora of researches in the area
of ambient assistive living services [203, 221, 14, 97] and controlled access to
ubiquitous hospital information [128]. The objective of a UHMS is to provide
continuous health monitoring, both at home and outside of it. People need to
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have their health condition under control not only when at home, but wherever
they are. One of the main features of a UHMS is to automatically generate alerts
to notify the family or the patient’s doctor about a possible health emergency so
that they should rush to their help to him. Examples of the data used for the
detection of a possible health incident, as they are reported in [33], are: heart
rate, blood pressure, galvanic skin response, skin temperature, heat flux, subject
motion, speed and the covered distance.

An important issue of UHMDS and health-related applications in general, is
that health data are sensitive personal data of patients. Privacy-related legisla-
tion like the European Data Protection Directive [80] and the HIPAA (Health
Insurance Portability and Accountability Act) [1] explicitly define the rules for
protecting the privacy of patients. The so far general architecture of a UHMS
requires that all personal medical data (such as those reported above) which are
produced by the patients’ wearable sensors are collected and stored in a central
service, specifically at the Health Monitoring Center (HMC) [153, 71]. The HMC
is responsible not only for the collection and storage, but also for the control
of these critical personal data. However, this technique runs significant risks for
the security of the actual data, for the privacy of the monitored people, and,
moreover, has an enormous computational and storage cost for the HMC.

At the same time, the use of statistical methods is an integral part of medical
research. A medical statistic may comprise a wide variety of data types, the most
common of which are based on vital records (birth, death, marriage), morbidity
(incidence of disease in a population) and mortality (the number of people who
die of a certain disease in relation with the total number of people). Additional
personal data items may needed for other well-known statistical computations like
the demographic distribution of a disease based on geographic, ethnic, and gender
criteria, the socioeconomic status and education of health care professionals, and
the costs of health care services.

In this work, we deal with the privacy-enhanced management of ubiquitous
health monitoring data [60] as well as how this data can be used within privacy-
preserving distributed statistical analysis [63, 61]. Regarding the first deal, we
suggest the decentralization of the collection of medical data at the users’ side.
This is achieved by the use of personal agents that will be continuously online and
collect the medical data of their owners. In addition to the data that are obtained
by wearable sensors, the agents may also have other data, such as demographic
elements about the patient and further information about his health records, as
well. The additional data can be used to support filtering of the results within
distributed computations. Apart from the management of the personal data, the
patient agent’s automatically monitors the different changes in medical data with
a dedicated health component. As soon as the health component detects aber-
rations in the raw health data, it informs the HMC by giving it access to the
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user’s data so as to decide itself for the danger of the situation. In our approach,
the usage of the agents does not block the remote monitoring of the patient’s
health by an authorized doctor; it only ensures the controlled, user-aware, access
to these sensitive data.

For the statistical analysis, we propose a privacy-preserving cryptographic
protocol based on secure multi-party computations that accept as input current
or archived values of users’ wearable sensors. This distributed computation is
performed by a community of the patients’ personal software agents. We describe
a prototype implementation of the proposed solution and present experimental
results that confirm the viability and the effectiveness of our approach.

The personal data management approach proposed in this work achieves a
number of advantages in comparison with the existing architecture of a UHMS,
and simultaneously enhances the privacy of the patients in such a system. The
main advantages are:

• Only controlled access to the health data is provided and every data access is
logged by keeping who retrieved which data items and when this happened.

• The whole history of medical data, including the raw sensors’ data, can
be kept in the agent, whereas this might not be possible on the HMC for
practical reasons. At the same time, decongestion of the HMC from the
large amount of data. This can make the computational requirements of
the central servers more tolerable.

• Less risk of massive theft of personal data since they are distributed at the
users’ side.

• Option for usability of these data by authorized third independent services
or for performing distributed computations.

On the other hand, important advantages of our privacy-preserving statistical
analysis approach in comparison to traditional statistical analysis techniques are:

• Utilizing valuable, sensitive, up-to-date personal data while ensuring pri-
vacy.

• Simplifying the process and significantly reducing the time and cost for
conducting a statistical analysis.

A prerequisite for our approach is that each patient must have a personal
software agent at his disposal and permanent access to the Internet. The com-
putational requirements for the personal agent can be fulfilled with commodity
hardware and hence its cost is not high. Thus, it is plausible to assume that
patients with a UHMS can afford the extra cost for such an agent.
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5.2 Related Work
Personal data of users are commonly stored in central databases at the service

provider’s side. In this way, the users have essentially no control over the use of
their personal data. To address privacy concerns, different kinds of frameworks
that are related to personal data have recently been proposed. See for exam-
ple [133] and the references therein. Moreover, general surveys on privacy en-
hancing technologies are given for example in [103, 90]. Of particular importance
for the management of health data in this work is the Polis platform presented
in Chapter 3. In this work, we extend Polis agents with additional features and
adapt the decentralized, agent-based approach of Polis for the management of
the patients’ personal data.

In the second and main part of this work, we present a solution for distributed
privacy-preserving statistical analysis of personal health data. Our approach is
based on secure multi-party computations (MPCs). The general model of a MPC
was firstly proposed by Yao [227] and later was followed by many others [183, 160].
In general, a MPC problem concerns the calculation of a function with inputs from
many parties, where the input of each participant is not disclosed to anyone. The
only information that should be disclosed is the output of the computation. The
general solution for MPC presented in [227] is powerful but commonly leads to
impractical implementations.

A secure two-party computation (S2C) for the calculation of statistics from
two separate data sets is presented in [68]. Each data set is owned by a company
and is not disclosed during the computation. Similar results are shown in [69],
this time focusing on linear regression and classification and without using cryp-
tographic techniques. Some indicative works from the related field of privacy-
preserving data mining are [113, 70, 138]. A major difference of our work from
the above is that in our approach every participant is in control of his health
data and that the distributed computation is performed by the community of
the personal software agents. Using software agents as building blocks for soft-
ware systems is an established practice; see for example [85] and for a recent
survey [16].

Another approach for statistics on personal data is anonymization, i.e., the
sanitization of a data collection by removing identifying information. The data
anonymization approach and some of its limitations are discussed for exam-
ple in [7, 146, 231]. Data anonymization applies to data collections in central
databases and is not directly comparable to our decentralized approach. Finally,
an example of an efficient privacy-preserving distributed computation is given
in Chapter 4, where personal agents of doctors execute a distributed privacy-
preserving protocol to identify the nearest doctor to an emergency. The focus of
the present work is on privacy-preserving distributed statistical analysis using a

83



5.3 Privacy-Enhanced Management of UHMD

massive number of participants.

5.3 Privacy-Enhanced Management of UHMD
In this section, we describe the proposed architecture for privacy-enhanced

management of UHMD and show how it fulfills the goal of protecting the personal
data and enhancing the privacy of patients.

5.3.1 Management Architecture
An overview of the proposed architecture for a UHMS is presented in Fig-

ure 5.1. The emphasis of the description is on the part of personal agents. The
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Figure 5.1: The proposed management architecture for a UHMS.

biomedical data that are produced by the patients’ wearable sensors are wirelessly
collected through a local wireless network in the patient’s body into a personal
mobile device, such as a smart phone. Afterwards, the measured biomedical data
are transmitted via multiple complementary wireless networks (GPRS, 3G, Wi-
Fi), through the Internet, towards the patient’s personal agent. The personal
agents that are used for this task are the Polis agents and have been suitably
modified for this purpose. The features which have been added to the Polis agents
so as to be used in a UHMS are:

1. Ability to collect dynamic personal data, such as the biomedical data of the
patients’ wearable sensors.
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2. Ability to control the values of the biomedical data for the detection of
some indicative cases of emergency.

A snapshot of a patients’ personal agent is shown in Figure 5.2. On the other
hand, the patients’ personal agents are self-organized into an appropriate virtual
network topology that can provide easy organization and identification of the
agents. This network topology can be used as a tool to conduct privacy-preserving
distributed computations.

Figure 5.2: A snapshot of UHMS personal agent.

Our architecture can support an intelligent health component which can make
a first check of the health data in real time. We provide an overview of the
functionality of such a component; a real implementation of such a tool is outside
of the scope of this work. The health component of the personal agent checks
automatically the incoming vital signs with the purpose to address for further
thorough check in HMC if there are indications of an emergency (see Figure 5.3).
An example of rules/decisions that a health component can apply in order to
decide about an emergency can be found in [203]. If necessary, the HMC can be
consulted by the personal doctor of the patient. The personal doctors are shown
as “Doctors” in Figure 5.1. Depending on the situation, the HMC can coordinate
the immediate medical service at the closest or most appropriate local medical
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facility using the best available transportation service (e.g.: ambulance). Finally,
an additional responsibility of the HMC is to inform the family of the patient
about his condition so that they could rush to provide their help.
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Figure 5.3: A system flowchart of the biomedical information.

5.3.2 Benefits of the Architecture
The idea of a decentralized architecture for storage and control of the pa-

tients’ medical data into their personal agents, as it has already been mentioned
provides the advantage of enhanced control on the user’s personal data. More-
over, this decentralized approach can also contribute to improved data security,
since invaders find large collections of personal data much more inviting than an
individual’s personal data [144]. The decentralized approach grants to the patient
the right to control the disclosure of his health data and mitigates its feeling of
being under permanent surveillance. In addition to enhancing privacy, the de-
congestion of HMC from the huge amount of data, including raw sensors’ data,
that would be accepted if the patients sent their data directly to it, is achieved.
Even in the case that the data would be collected at the HMC, these would be
much less in volume than those that would actually be produced by the sensors,
thus the analysis would not be as effective as the one that would be made by the
agents themselves by having the complete data. With the proposed health data
management approach of this work, the HMC has now to handle only those cases
which may be at a certain risk. In case that the patient’s agent is out of operation,
the patient’s data which are collected by his smart phone could be transmitted
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for storage and control directly to the HMC until the failure is restored. This will
ensure fault-tolerance against possible agent failures.

It is noteworthy that storing health data at the patients’ side does not exclude
the possibility to access the data from a central database as long as the database
is entitled to do so. As shown in Chapter 3, the personal agents of Polis can be
interconnected with mainstream database servers to provide transparent access
to the personal data fields. The basic idea is that personal data fields in the
central database do not contain the actual data; instead, a ticket represented by
an appropriate data object is used to retrieve the data value on the fly. With
this approach, which has been tested with an Oracle database server, a query
submitted to the database may transparently retrieve – on the fly – personal
data items from the associated personal software agents and present the personal
data within the recordset (the answer of the database) of the query. An example
query and the corresponding recordset are given in Figure 5.4. The data fields
TimeStamp, BodyTemperature and HeartPulses are personal data fields and their
content are – transparently for the database user – dynamically retrieved from
the corresponding personal agents.

SQL> Select IDPatient , TimeStamp , BodyTemperature ,
HeartPulses From CurrentBiomedicalData
Where IDPatient Between 142120 And 142180;

Figure 5.4: SQL access to remote health data.

The choice to store the patient’s data in an agent enables the possibility to uti-
lize these data for the common wealth. The Nearest Doctor Problem (NDP) that
was presented in Chapter 4 is a typical example. The NDP is a privacy-preserving
protocol, which uses a network of the doctors’ agents aiming to find the nearest
doctor in case of an emergency, by using dynamic data such as their location. In
our case, the data of the patients could be used for a similar privacy-preserving
distributed computation. Such an example is the monitoring progress/spread of
a pandemic in a region. Data such as the location and the body temperature of
the patients would be required for this example. Another example is a medical
statistical research on the biomedical data of the wearable sensors as well as on
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the medical records of patients. In the following section we use our distributed
data management approach for a privacy-preserving distributed statistical anal-
ysis application.

5.4 Privacy-Preserving Statistical Analysis on
UHMD

In this section, we present a method for privacy-preserving statistical analysis
of ubiquitous health monitoring data (UHMD). The core of our approach is a
privacy-preserving distributed computation that is collaboratively executed by
the participating personal software agents. Regarding privacy, the question we
will address is how to achieve privacy of type (b) (see details in Section 2.1.4),
that is, how to compute the statistic results without pooling the data, and in a
way that reveals nothing but the final results of the distributed computation.

5.4.1 Architecture of the Distributed Computation
Our solution is build on top of the privacy-enhanced UHMS presented earlier

in this work. An overview of the architecture of the statistical analysis system
including the extra components that are required for a distributed statistical
analysis computation, i.e., the Network Community of Personal Agents and the
Statistical Analysis Service (SAS), is shown in Figure 5.5.

The personal agents are organized into a virtual topology, which may be a
simple ring topology or a more involved topology for time-critical computations.
On the other hand, the SAS is a server that initiates the distributed computation
on the users’ medical data and collects the aggregate results. Each researcher who
wishes to carry out a statistical research and is entitled to do so, can submit his
task to the SAS.

5.4.2 The Main Steps of the Distributed Computation
The main steps of the proposed distributed computation for the statistics

calculation are:

• Initially, the researcher submits the request to conduct a specific statistical
analysis to the SAS.

• The SAS accepts the request after verifying the credentials of the researcher.

• The SAS picks one of the personal agents to serve as the root-node for the
particular computation and submits the request to it.
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Figure 5.5: The architecture for performing privacy-preserving statistical analysis.

• The root-node coordinates a distributed computation that calculates the
specified statistical function.

• At the end of the distributed computation, the SAS and the researcher
will only learn aggregate results of the computation without any additional
information of the personal data of individual participants.

5.4.3 The Secure Distributed Protocol
In this section, we present the main idea of the cryptographic protocol that is

used in the privacy-preserving statistical computations. The protocol is secure in
the Honest-But-Curious (HBC) model (see Section 2.9.1), where the users’ agents
participating in the computation follow the protocol steps but may also try to
extract additional information. During the calculation the actual users’ personal
data are not disclosed in any stage of the process but only the aggregate results
are revealed at the end. An instance of a statistical computation problem consists
of:

• N patients P1, P2, . . . , PN and their personal data.

• N personal software agents: The agents of all patients that will partic-
ipate in the distributed privacy-preserving computation.

– Input: The type of the statistical function and its parameters. In
addition, selectivity constraints for the data set may also be specified.
Note that more than one statistical functions on the same dataset can
be calculated with a single computation.
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– Output: The necessary aggregate values (e.g. wx, ux, zxy and n, which
are defined later) that are needed to calculate the given statistical
function.

Consider the following statistical computation instance: Computing the aver-
age of the female patients’ age in a city. First, we assume that the results of the
specific query are not considered a threat against the users’ privacy, that is, pri-
vacy type (a) of Section 2.1.4 is preserved. Then, given the computation instance,
the SAS chooses a node from the network of the users’ agents as the root-node
for the particular computation. The SAS sends the type of the requested compu-
tation and its parameters to the root-node. The parameters of the computation,
i.e., the female gender and the city name, are used to filter the data set. Each
personal agent, decides privately to provide data or not to the statistical research.

A simple topology for the personal agents is a virtual ring topology that
contains all agents as nodes (Figure 5.6b). For time-critical computations, more
complex topologies like a virtual tree can be used (Figure 5.6a). The tree topology
for example has been used in privacy-preserving computation of Chapter 4. At
the end of the execution, the root-node collects the results of the calculation as
an encrypted message and sends it to the SAS. The message is encrypted with
the public key of the SAS, which is assumed to be known to all nodes. In this
way, the protocol ensures k-anonymity (see Section 2.1.3.1), where k = N and
N is the number of all the nodes in the network. We use the Paillier public key
cryptosystem [154] for the proposed cryptographic protocol. An important feature
of the Paillier cryptosystem is its homomorphic property which supports additive
homomorphism (see details in Section 2.6).

User Agent 

Root Node

Statistical Analysis Service (SAS)

Broadcast Message
Encrypted Data

N: Users’ Agents 

(b) Ring Topology(a) Tree Topology

Figure 5.6: Possible network topologies.
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5.4.4 The Computations
In this section, we use our approach to calculate representative statistical

functions with a distributed privacy-preserving computation. Wherever it is nec-
essary, the expression of the statistical function is brought to a form that is
appropriate for the distributed computation.

5.4.4.1 Arithmetic Mean

The arithmetic mean of a variable X (with sample space {x1, . . . , xn}) is given
by the following equation:

x̄ =
1

n

n∑
i=1

xi

We use the additive homomorphic property of Paillier to calculate the value of
the terms ux =

∑n
i=1 xi and n. The calculation is privacy-preserving; no single xi

information is disclosed. Once the SAS learns the values of the terms ux and n,
it can compute the arithmetic mean. More analytically, using the homomorphic
property of Paillier, the two terms ux and n can be transformed into the following
form:

Epk(ux) =
n∏

i=1

Epk(xi) and Epk(n) =
n∏

i=1

Epk(1) ,

where the Epk indicates that the message is encrypted with the current public
key of SAS for the specific statistical analysis. Each agent i that participates in
the statistical analysis, prepares its own encryptions Epk(xi) and Epk(1). These
encrypted messages are used to calculate the above two global products. Agents
that do not participate in the statistical computation (because for example they
do not satisfy some selection criterion) multiply each of the above two products
with an independent encryption of zero Epk(0).

5.4.4.2 Frequency Distribution

The frequency distribution is a tabulation of the values that one or more vari-
ables take in a sample. Each entry in the table contains the frequency or count
of the occurrences of values within a particular group or interval; in this way, the
table summarizes the distribution of values in the sample. The graphical represen-
tation of the frequency distribution is the well known histogram. Figure 5.7 shows
how the frequency distribution would become by using ciphertext as counters in
each range, where each ciphertext is given by the following equation:

Epk(nv) =
n∏

i=1

Epk(m), where m =

{
1, x ∈ [xv−1, xv)
0, x ̸∈ [xv−1, xv)
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Figure 5.7: Representation of a frequency distribution.

5.4.4.3 Variance

The variance var(X) of a variable X is used as a measure of how far a set of
numbers are spread out from each other and is defined as:

var(X) =
1

n

n∑
i=1

x2
i −

(
1

n

n∑
i=1

xi

)2

The unknown terms that are required to calculate the variance with the help of
the homomorphic property of Paillier are wx =

∑n
i=1 x

2
i , ux =

∑n
i=1 xi and n, by

taking the following form:

Epk(wx) =
n∏

i=1

Epk(x
2
i ), Epk(ux) =

n∏
i=1

Epk(xi) and Epk(n) =
n∏

i=1

Epk(1)

5.4.4.4 Linear Regression

The linear regression of a dependent variable Y of the regressors X is given
by the equation y = a + bx, where a and b are parameters. The determination
of a and b gives an approximate line, which connects the values of Y with the
corresponding values of X. This line can be constructed by using the method of
least squares and the parameters a and b are given by the following equations:

b =

n

n∑
i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi

n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2 and a =
1

n

n∑
i=1

yi − b
1

n

n∑
i=1

xi

The unknown terms that are required to calculate the parameters of line y with
the help of the homomorphic property of Paillier are the wx =

∑n
i=1 x

2
i , ux =∑n

i=1 xi, uy =
∑n

i=1 yi, zxy =
∑n

i=1 xiyi and n, by taking the following form:

Epk(wx) =
n∏

i=1

Epk(x
2
i ), Epk(ux) =

n∏
i=1

Epk(xi),
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Epk(uy) =
n∏

i=1

Epk(yi), Epk(zxy) =
n∏

i=1

Epk(xiyi) and Epk(n) =
n∏

i=1

Epk(1)

5.4.4.5 Linear Correlation Coefficient

The linear correlation coefficient corr(X,Y ) of two random variables X and
Y is a measure of the strength and the direction of a linear relationship between
two variables and is defined as:

corr(X, Y ) =

n

n∑
i=1

xiyi −
n∑

i=1

xi

n∑
i=1

yi√√√√n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2
√√√√n

n∑
i=1

y2i −

(
n∑

i=1

yi

)2

The unknown terms that are required to calculate the linear correlation coefficient
with the help of the homomorphic property of Paillier are wx =

∑n
i=1 x

2
i , ux =∑n

i=1 xi, wy =
∑n

i=1 y
2
i , uy =

∑n
i=1 yi, zxy =

∑n
i=1 xiyi and n, by taking the

following form:

Epk(wx) =
n∏

i=1

Epk(x
2
i ), Epk(ux) =

n∏
i=1

Epk(xi),

Epk(wy) =
n∏

i=1

Epk(y
2
i ), Epk(uy) =

n∏
i=1

Epk(yi),

Epk(zxy) =
n∏

i=1

Epk(xiyi) and Epk(n) =
n∏

i=1

Epk(1)

5.4.4.6 Covariance

The covariance cov(X,Y ) of two random variables X and Y is a measure of
the strength of the correlation between the two variables and is defined as:

cov(X, Y ) =
1

n

n∑
i=1

xiyi −
1

n

n∑
i=1

xi ·
1

n

n∑
i=1

yi =
1

n

n∑
i=1

xiyi −
1

n2

n∑
i=1

xi

n∑
i=1

yi

The unknown terms that are required to calculate the covariance with the help
of the homomorphic property of Paillier are ux =

∑n
i=1 xi, uy =

∑n
i=1 yi, zxy =∑n

i=1 xiyi and n, by taking the following form:

Epk(ux) =
n∏

i=1

Epk(xi), Epk(uy) =
n∏

i=1

Epk(yi),
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Epk(zxy) =
n∏

i=1

Epk(xiyi) and Epk(n) =
n∏

i=1

Epk(1)

Comments. From the analysis of the above statistical functions, we conclude
that apart from the frequency distribution, all other function can be simultane-
ously calculated by computing once the required aggregate terms. Moreover, it
is clear that the proposed solution can also be used to calculate other statistical
functions, such as the polynomial regression and so on. We discuss such issues in
the next section.

5.4.5 The Protocol’s Security
In this section, we show that the proposed protocol of a distributed statis-

tical analysis in a UHMS does not violate the privacy of participants. The se-
curity holds for the model of Honest-But-Curious (HBC) users (see details in
Section 2.9.1).

In the cryptographic protocol described above, the information exchanged by
agents is encrypted with the Paillier cryptosystem [154], which is known to offer
Semantic Security [95], that is, it is infeasible for a computationally bounded ad-
versary to derive significant information about a message (plaintext) when given
only its ciphertext and the corresponding public encryption key. Consequently,
assuming honest-but-curious parties and that users’ agents do not collude with
the SAS party outside of the protocol, our approach is semantically secure. In
Section 5.4.6, we show that the case where some user agents collude with the
SAS outside of the protocol can be handled with a threshold decryption model.

From the above, we conclude that the computation with the homomorphic
encryptions does not leak personal information of participating individuals (pri-
vacy type (b) in Section 2.1.4). As noted earlier, the (decrypted) outcomes of the
statistic computation are also assumed to preserve privacy of type (a). We can
now discuss the privacy guarantee of the whole approach. A common criterion
for privacy protection is k-anonymity (see Section 2.1.3.1), which requires that
data of the outcome cannot be associated with any particular patient. The pro-
posed solution offers k-anonymity in the sense that the result computed at the
end of the protocol cannot be attributed to any of the N participated agents, i.e.,
k = N even if the list of participating users is known (assuming no background
information on specific users is available).

In summary, the key security features of our protocol are:

• Each agent that receives a message from the previous node cannot obtain
information about the contents of the message, because the ciphertexts are
encrypted with the Paillier cryptosystem.
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• Each node alters the ciphertexts of the computation. Even the nodes that
do not participate in the statistical function multiply the ciphertexts with
an encryption of number “0”, which is the neutral element of the additive
homomorphic property of Paillier. Thus, the ciphertext is modified at ev-
ery node, even if the corresponding node does not give any input to the
computation.

• At the end of the protocol, only the variables that are needed for a particular
statistical function are revealed. As a result, no individual can be associated
with the value that he had used in the computation. Consequently, the
proposed protocol preserves k-anonymity for k = N , where N is the number
of all agents in the network.

Another criterion for evaluating privacy protection is the concept of differ-
ential privacy (see details in Section 2.1.3.2). Loosely speaking, the aim of dif-
ferential privacy is to ensure that the ability of an adversary to inflict harm (or
good, for that matter) – of any sort, to any set of people – should be essentially
the same, independent of whether any individual opts in to, opts out of, the
dataset [73, 72].

If privacy of type (a) (Section 2.1.4) is preserved, for example, no queries or
sequences of queries addressing a very small number of individuals are permitted
etc., then it is plausible to assume that our approach achieves a satisfactory level
of differential privacy. Note that the outcomes of the statistical computations are
sums or aggregate results computed from a large number of sensor measurements
and demographic values of a large population. One may also consider of adding
Laplace noise [74] to the statistical results in order to further enhance the dif-
ferential privacy criterion, even though there is some recent criticism of such an
approach [178].

5.4.6 Security Discussion
In this section, we identify some representative threats against our application

and discuss how they are or can be addressed within our approach. The threats
concern either the correctness of the aggregated results or the privacy of the
involved participants.

• Incorrect sensor measurements. This case refers to the case where one or
more sensors generate erroneous data of values large enough to signifi-
cantly influence the aggregate result. Such incidents could disrupt a statis-
tical analysis and would be difficult to be noticed in the statistical results.
However, such incorrect measurements could be detected by the intelligent
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health component or some dedicated filter of the patient’s agent and ex-
cluded from the current statistical analysis. This solution is acceptable in
the HBC model. Moreover, even for the case where such incorrect measure-
ments could be maliciously submitted in order to skew the statistical result,
we could use more advance techniques of the area of electronic voting [124].
In this case, each node would have to run a zero-knowledge proof with its
predecessor/s with purpose to verify that the measurements are within an
acceptable range.

• Dedicated queries with purpose to reveal personal biomedical data of a partic-
ular patient. One query or a set of queries may be chosen and submitted to
target specific patients, by using background information on the set of par-
ticipating individuals. Such dedicated queries may cause leakage of personal
data of the selected patients. As noted earlier, such an attack is a threat
against privacy of type (a) and the participants have to be protected with
respect to such attacks. The problem is well known in the area of statistical
databases [5] and it is not something new. A possible solution could be to
use a second authority which will check if there are enough patients who
cover the query’s criteria before the SAS performs the specific statistical
analysis.

• Collusion among some patients and the SAS. In this case, the SAS will try
to collaborate with at least two patients (in the simple ring topology) with
purpose to reveal the private values of a patient. These two patients have to
be the predecessor and the successor of the particular patient. More specif-
ically, the colluding predecessor creates neutral ciphertexts and forwards
them to the intermediate node. This node would then encrypt its private
values and forward the result to its colluding successor (according to the
topology). The successor would then immediately return the values to the
SAS which now gets to decrypt these private values. Such malicious behav-
iors can be effectively handled by deploying threshold decryption model [49]
for the decryption of the encrypted values. Threshold decryption model re-
quires a number of designated parties exceeding an appropriate threshold
to cooperate for the decryption to be possible.

5.4.7 Experimental Results
To evaluate our solution, we developed a prototype that carries out distributed

statistical analysis on medical data. The application is implemented in Java and
for the cryptographic primitives the Bouncycastle [28] library is used. The per-
sonal agents of the Polis platform (Chapter 3) are used as the personal data
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management agents of the patients. For this approach, the Polis agents were suit-
ably modified so as to be able to manage both health records and health data
that would actually be collected through a secure communication channel by the
patients’ wearable sensors. The community of the personal agents is organized
as a Peer-to-Peer network. At this stage of development of the prototype, the
backbone of the topology is a virtual ring topology. The ring offers a simple and
reliable solution for the interconnection of the agents. For time-critical calcula-
tions of statistics a more involved topology like a virtual tree should be used.

The personal agents use production-ready cryptographic libraries and em-
ploy 1024 bits RSA X.509 certificates. The communication between agents is
performed over secure sockets (SSL/TLS) with both client and server authenti-
cation (see details in Sections 2.7 and 2.8). Below we describe an experiment of a
distributed statistical analysis with 6 agents and the SAS. The requested statistic
is:

• The arithmetic mean of the current body temperature of patients who are
aged between 55 and 65 years old and their gender is female.

For the needs of the experiment, each agent generates random values for the
age, the gender, and the current body temperature. We assume that the selectivity
of the query criteria is high enough to preserve privacy of type (a) (Section 2.1.4).
Then, in brief, the statistical computation works as follows. Initially, the SAS
randomly chooses a node from the agents’ network, in this case agent ‘Patient2’,
as the root-node, and forwards the description of the statistical computation to
it. The values of each agent which are related to the computation are shown in
Table 5.1. The last two columns show the aggregate values that are encrypted after
the corresponding agent applies its values to the results. Since the homomorphic
property of Paillier applies to integers, decimal values like the body temperature
have also to be represented with integers. In our example, the temperature is
rounded to a number with at most two decimal digits and then multiplied by 100
to become an integer.

At the end of the computation, the agent ‘Patient2’ as the root-node collects
the results and sends them back to the SAS. Finally, the SAS decrypts the results
and finds that the average of the question which was submitted is 37.125 oC. A
snapshot of the application during the execution of the experiment is shown in
Figure 5.8.

We also performed a set of large-scale experiments with up to 300 agents. More
precisely, we evaluated the efficiency of our solution with a series of experiments
on a gradually increasing number of up to 300 agents. For this experiment, a
network of 30 computer workstations with Intel Core 2 Quad Q8300 CPU’s at
2.5 GHz, 2 GB RAM and a 100 Mbps network, were used. The workstations
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Agent Curr. Temp. Age Gender Epk(ux) =
n∏

i=1

Epk(xi) Epk(n) =
n∏

i=1

Epk(1)

Patient2 36.68 oC 51 Female E(0) E(0)

Patient3 36.50 oC 56 Female E(3650) E(1)

Patient4 37.70 oC 60 Female E(7420) E(2)

Patient5 38.10 oC 65 Female E(11230) E(3)

Patient6 37.12 oC 59 Male E(11230) E(3)

Patient1 36.20 oC 63 Female E(14850) E(4)

Table 5.1: Example of computation, where the agents in gray rows did not take
part in computation.

Figure 5.8: A snapshot of the agent ‘Patient3’.

were running a 32-bit operating system and the agents were executed in 32-
bit Java virtual machines. Each computer was shared by at most 10 agents, to
ensure an even workload distribution and avoid single overloaded workstations;
an overloaded workstation would become a bottleneck that could significantly
delay the execution of the whole protocol.

The running times of our experiments are shown in Figure 5.9. In this figure,
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we present the execution times for the computation of the arithmetic mean, the
variance and the frequency distribution (for 10 subintervals) functions. As ex-
pected, the execution times depend practically linearly on the number of agents
which take part in the computation and on the number of encryptions and mul-
tiplications in every statistical function. The overall running time is more than
satisfactory for batch execution of statistical computations. In case of large num-
bers of statistical computations, the rate of computations can be substantially
improved by using a pipeline of independent computations. For cases where the
run-time of the computations is important, the distributed computation can be
executed on a virtual tree or some other – low depth – topology, instead of the
ring topology. In this case one would expect, and we actually have such prelimi-
nary measurements albeit within a different context (Chapter 4), that the total
running time will depend only logarithmically on the total number of nodes.

Finally, the execution times of the computations could be significantly re-
duced by simply using 64-bit Java virtual machines for running the experiments.
This change would greatly improve the execution times especially of the heavy
encryption operations which involve BigInteger1 variables. In a comparable, inde-
pendent, experiment we noticed an almost four-times improvement of the execu-
tion times when 64-bit Java was used in place of 32-bit Java. The use of the 64-bit
virtual machine seems to effectively exploit the bigger registers of the AMD64
architecture for the cryptographic operations.

5.5 Conclusions
The tendency of the society towards increasing numbers of elderly people

and generally people who need continuous health monitoring makes the need of
Ubiquitous Health Monitoring Systems (UHMS) imperative. At the same time the
concerns of the public about privacy are also rising. In this work, we presented an
architecture for privacy-enhanced UHMS and proposed the use of the ubiquitous
health data that are obtained by the wearable sensors in a UHMS for caring
out statistical researches. The proposed architecture allows the patients to have
enhanced control over their personal data, so as not to have the feeling of being
continuously under surveillance. The enhanced control on their personal data was
achieved by using personal software agents for the management of the patients’
personal data. Putting personal agents in charge of personal health data can
open the way for the definition and implementation of new services which utilize
personal data to contribute to public well being, while at the same ensuring the
privacy of the involved individuals.

1BigInteger is an immutable arbitrary-precision integer.
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Figure 5.9: Computation times of arithmetic mean, variance and frequency dis-
tribution (for 10 subintervals) statistical functions with respect to the number of
agents.

In this direction, we presented a solution for privacy-preserving statistical
analysis on ubiquitous health data. The protection of privacy is achieved by us-
ing cryptographic techniques and performing a distributed computation within
a network of patients’ personal agents. We described how representative statisti-
cal functions can be executed distributedly by using the proposed cryptographic
protocol. Finally, we developed a prototype implementation and performed an
experimental evaluation that confirmed the viability and the efficiency of our
approach.
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Chapter 6

Privacy-Preserving Computation
of Participatory Noise Maps in
the Cloud

6.1 Introduction
Many people are reluctant to entrust today’s computer systems with their

personal information, thus in [145] the authors have identified privacy as a pillar
of trustworthy software systems. Specifically, the authors consider trustworthy
systems to respect privacy if the customer is able to control data about them-
selves, and those using such data adhere to fair information principles. This work
contributes to this end, by presenting an architecture and implementation for in-
corporating privacy-preserving techniques in participatory sensing applications.

Participatory sensing [31, 159] appropriates everyday devices such as mobile
phones to acquire information about the physical world (and the people in it) at a
level of granularity which is very hard to achieve otherwise. A crucial component
of participatory sensing systems is geolocation, i.e., labeling data with geographic
coordinates. For example, in the context of NoiseTube [136, 188], a participa-
tory sensing system and service1 designed to monitor and map noise pollution,
it would be practically impossible to produce noise maps on the basis of sound
level measurements, gathered quasi-continuously as contributors walk the streets,
without automatic geolocation of measurements by means of GPS (Global Po-
sitioning System). The same situation applies more generally, as the potential
of high measurement granularity essential to participatory sensing frameworks is
only manageable if this data can be automatically organized, e.g. through loca-
tion.

1http://www.noisetube.net
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However, location traces constitute sensitive personal information. In small-
scale deployments, in which individual contributors know or trust each other,
the disclosure of such information may be acceptable. However, in larger-scale
deployments, involving more contributors and possibly coordinated by some au-
thority, trust relationships tend to be much weaker and contributors may be
uncomfortable about the type of information that is collected, and with whom it
is shared. Hence, scaling up a participatory sensing project inherently increases
privacy concerns [126, 41], which in turn can severely hamper the project from
reaching its goals.

In this work, we present a privacy-preserving solution for participatory sensing
frameworks [65, 64] where location-based data aggregation is used to produce
maps involving measurements of groups of users. Our system, called NoiseTube-
Prime or NTPrime for short, relies on privacy-preserving distributed computation
in the cloud and is oriented towards coordinated mapping campaigns set up by
citizens and/or authorities. NoiseTubePrime differs from earlier work on privacy-
preserving mobile sensing systems [114, 21, 181], as it is at the same time simple,
safe, verified, and transparent to end-users. The core of the NoiseTubePrime
architecture is a privacy-preserving cryptographic protocol (see for example [23])
implementing a large scale distributed computation.

The novelty of our approach is first, that by thinking in terms of campaigns
rather than when thinking in terms of privacy of stand-alone users one can deal
with privacy in a distributed way. This allows us to avoid to compensate privacy
with the accuracy of the resulting maps (as e.g. data obfuscation does). Cam-
paigns are focused sensing efforts of groups of users, where geographical, tem-
poral and/or contextual concerns are put forward. The outcome of a campaign
typically entails aggregating individual user data into a composite map, and it
is precisely this property that allows us to rely on a distributed cryptographic
protocol which ensures privacy of users and at the same time precise noise maps
(in terms of the contributing measurements).

Second, our approach is the first to incorporate cloud computing, essential to
ensure transparency and efficiency. The main reasons for resorting to computation
in the cloud are high availability, ease of deployment, and scalability. The need for
high availability is essential because we need to ensure that all the data collected
by different campaign contributors is available every time an aggregated map is
to be generated. Concretely this means that a piece of software representing each
contributor (i.e. an agent) must be online and able to respond to outside requests
at all times. While in principle this is feasible with a smartphone application (cf.
chat applications), mobile data connectivity can be intermittent and local compu-
tational resources are limited. Also the fact users would need to run a “server-like”
application on their personal phone could raise additional privacy concerns. For
these reasons it seemed desirable to host the software agents on an infrastructure
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with near-permanent availability and vast computational resources. Essentially
this means we decouple the role of collecting data on a mobile phone (using the
NoiseTube Mobile app) from the role of managing the data and taking part in
distributed computations (through the NoiseTubePrime software agent). Also,
data management directly in a mobile device contains security threats that are
described in [148]. Ease of deployment is an important concern because you just
cannot expect campaign contributors to install and configure complicated soft-
ware on their personal computers, let alone run their own servers. Hence low-cost
or even free cloud computing services that allow people with relatively moderate
computing skills to set-up and manage their own software agent with a few clicks
(using a deployment package provided to them) offer a suitable alternative. Cloud
computing services are also extremely scalable, meaning that sensing campaigns
can grow without the coordinators having to worry about things like server load
and network bandwidth.

6.2 Background

6.2.1 Participatory Monitoring Campaigns
Participatory platforms, are typically client-server systems that consist of a

mobile application used by contributors on the one hand, and a community mem-
ory [187, 188] system running on a central server on the other. The former enables
users to sense environmental parameters (e.g. sound) whenever and wherever
they please. When data collected by a user is uploaded to the server, either au-
tomatically or manually, typically a map (and, optionally, a statistical analysis)
is produced showing how the measured parameter is distributed geographically.
In the concrete example of NoiseTube, the map is a location trace of a user’s
measurements, shown as green-to-red colored dots depending on the sound levels
measured [136, 188].

NoiseTube is one of the first participatory sensing platforms to endeavour the
transition from a tool used by individuals to one that can serve as a basis for coor-
dinated measurement campaigns, be it grassroots or authority-led. Indeed, recent
work [51, 52, 188] shows that, when coordinated properly, NoiseTube campaigns
can produce collective noise maps that are of comparable quality to simulation-
based maps produced by governments today. To do this a statistical component
was introduced which produces a single aggregate noise map from a collection of
measurement tracks contributed by groups of users. The basic procedure is this:
divide the surveyed area into smaller areas using a regular grid, partition the set
of measurements over those areas based on their geographic coordinates, make a
statistical analysis per unit area, and finally, map the color coded averages on
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each pertaining area. While such aggregated map-making has been carried out
before in individual instances, we are currently extending the NoiseTube Web
application with this collective noise mapping functionality so that it enables
community-driven environmental sensing. The idea is that larger and more di-
verse groups of people may use NoiseTube to define and coordinate their own
campaigns with little to no involvement of experts. Concrete examples are cit-
izens that wish to map the noise in their commune or city while construction
works are going on, or a commune which wants to investigate how rescheduling
of a bus line effects Monday morning traffic.

In small-scale campaigns, such as the one reported in [51, 52], privacy issues
tend to be of little concern. The reason is that participants typically already
know and trust each other (e.g. because they are members of a citizen activist
group), who consciously take part in a scientific experiment or community ef-
fort and got time to get acquainted with the researchers and/or coordinators in
person. However, in campaigns that cover larger areas, last longer, and involve
larger numbers of more diverse contributors and coordinators, this kind of mutual
confidence could easily break down.

The issue of privacy is thus an important hurdle for the adoption of NoiseTube
as a tool for larger-scale (e.g. city-wide) noise mapping campaigns, a situation
which holds more generally. Hence there is a clear need for a privacy-preserving
extension of participatory sensing platforms. This is why, in this work, we de-
sign a privacy-preserving extension of participatory sensing frameworks, intro-
ducing privacy-preserving functionalities at several levels, and implement it in
the context of the NoiseTube platform. As a proof of concept, as well as a vali-
dation of correctness, we use data from the above-mentioned earlier experiments
to demonstrate that NoiseTubePrime can produce exactly the same maps in a
privacy-preserving way.

6.2.2 Personal Data and Privacy
Desktop, mobile computing and sensing technology have greatly increased

the amount of personal information that is generated, while recent advances of
database technology enable the potential for this information to be (permanently)
stored and processed [112, 111]. To give an indication on the volume of personal
data, a case in point is that of Max Schrems, recently on the news. The 24-
year-old Schrems asked Facebook for a copy of all the data the social network
has on file for him and he got back a CD with 1,222 PDF files documenting his
every move1. This personal data is a critical, valuable resource that has to be

1http://threatpost.com/twenty-something-asks-facebook-his-file-and-gets-
it-all-1200-pages-121311
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protected in order to ensure the individual’s privacy rights: to protect his privacy
by retaining the control over his personal data and knowing who, when and why
gets access to these data. At the same time, the wide acceptance of electronic
transactions for everyday tasks resulted in an abundance of applications that
rely on the processing of this personal data. Thus, locking all personal data away
is not a solution. Instead, it should be possible to process such data in a way
that is both efficient and ensures its protection. Furthermore, when an individual
makes a transaction, only the minimum amount of personal information that is
needed to complete it should be disclosed, with clear terms on how the personal
data will be used.

Personal data of individuals who contribute to a participatory sensing project
typically exists in the form of location traces. To preserve user privacy in this
setting we follow an approach similar to one described in the Polis platform
(Chapter 3). Concretely, each user is represented by a personal software agent,
who manages his personal data and controls access to this data. Third-party
applications, other agents or services direct requests at these personal software
agents rather than at the user himself. The agents respond to these requests
according to a corresponding license agreement or policy. For the needs of this
work, we adapted the Polis approach to the management of personal data of
participatory sensing. However, the most important difference of this work with
respect to previous applications of the Polis approach, is that in NoiseTubePrime,
the personal software agents are outsourced to the cloud.

6.2.3 Cloud Computing
The past few years have seen a shift towards support for cloud computing

technology, both by industry and governments. Computing infrastructure, in-
stead of being offered as a product, rather is offered as a service. Instead of
running on machines owned or controlled by the user or client these services run
“in the cloud”1. In this way platforms, storage, computational power, as well as
software is designed, managed and delivered as cloud-based services. Today, there
exist several operational cloud platforms, offering services though APIs either for
free or under certain cost models. While cloud technology significantly changed
how computing infrastructure is offered, there are two major issues that have
arisen: one is interoperability, and the second is privacy. Indeed, cloud comput-
ing comes in different flavours from various vendors, and as standardised APIs
are still largely lacking, deploying similar services in each one of them can require
significant efforts. The other issue is that of privacy, as cloud technology has been

1I.e. on servers in vast, remote data centres with high bandwidth and high reliability, op-
erated and maintained by cloud service providers.
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criticized in terms of the potential for cloud service providers to gain access over
personal data.

An important novelty of the NoiseTubePrime approach is that personal soft-
ware agents, guarding each user’s privacy concerns, are outsourced to existing
commercial cloud infrastructures. This relieves the user from the trouble to run
and manage his own software agent. In NoiseTubePrime, personal agents are im-
plemented as Web services, deployed in the cloud. Note that our architecture
deals with both privacy and interoperability issues, as it does not disclose any
personal data to the cloud service providers (all data is encrypted), while we
demonstrate it over a heterogeneous environment of different service providers.

6.3 The NoiseTubePrime System
In order to remedy privacy concerns when creating collective maps, we propose

a solution relying on a privacy-preserving distributed computation algorithm for
generating grid-based maps for a target area and time-frame. Here we are inspired
by the procedure used in the existing NoiseTube service [52, 188], though we
stress that our ideas hold more generally for any participatory sensing framework
where maps are produced in terms of aggregated measurements. However, for the
sake of convenience we phrase our explanations below in terms of noise. At the
basis of this algorithm lies a privacy-preserving cryptographic protocol for secure
multi-party computations [227], which inputs are current or archived datasets of
geolocated sound level measurements gathered by multiple users. Computation
is executed by software agents running in the cloud.

Each user is represented by a personal, cloud-based software agent which acts
as a mediator. Such an agent temporarily stores encrypted user data, takes part
in the generation of participatory maps on the user’s behalf, while also crucially
preserving his privacy. All data transmitted by users to NoiseTubePrime agents
is encrypted. In this way we overcome privacy issues related to how the cloud
service provider might treat the data. Cloud deployment ensures that agents are
online continuously and have adequate computational resources. In this way users
do not need to operate agents on their mobile phones or personal servers.

An architectural diagram of the NoiseTubePrime system is shown in Fig-
ure 6.1. A typical scenario proceeds as follows. Suppose a particular entity, be it
an authority or a citizens’ organization, is interested to map a local area during a
time span of interest (e.g. Friday night in a pub area). The initiative taker(s) then
organize a measurement campaign in which a group of citizens use the NoiseTube
system to gather geolocated sound level measurements in the specific geograph-
ical region and time period. The campaign proceeds through the following steps
(Figure 6.2):
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Figure 6.1: The general architecture of our system.

(a) To collect data about noise pollution users download the NoiseTube client
application for their mobile device (e.g. from the Android Market)1. By
default measurement data is stored locally on each user’s mobile phone.
Users set up their personal cloud agent, which registers to a Directory Ser-
vice (DS) for the virtual network topology we deploy. Each user mandates
his NoiseTubePrime agent to take part in existing or future campaigns,
following a user-specified privacy policy.

(b) At some point in time the NoiseTube service announces a new campaign.
Users are invited to participate through their agents, where agent policy
dictates how agents should respond to such requests. For instance, agents
may choose to participate to campaigns based on whether their owners plan
to collect data in the specific region or not, or have collected relevant data
before2. A deadline is set for all agents interested in contributing to register
via the DS.

(c) When a user agrees to join a campaign (through the mediating agent), his
mobile device inspects the user’s local dataset for measurements that sat-
isfy the given constraints, and uses this data to generate and encrypt the
contribution of the user. The encrypted contribution is then handed over
to the user’s NoiseTubePrime agent in the cloud as soon as connectivity is
available. This data upload operation takes place once per user and cam-
paign/computation, and from that point on the user’s mobile device is no

1Note that the NoiseTubePrime functionality is not yet incorporated in NoiseTube app that
is currently available for download.

2Hence the computations may involve both past, current or future data.
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longer involved in the computation.

(d) Each NoiseTubePrime agent manages a user’s private data in the form of an
encrypted map for the area of interest. Maps are encrypted with a public key
that is either used across the system, is specific for the campaign in question,
or for a specific time period. This public key is one of a public-private key
pair that was generated by the NoiseTube service for this purpose; the
private key is kept only by the NoiseTube service itself. Agents only use the
encrypted data to participate in the generation of collective maps, when
allowed to do so by user policy.

(e) After the announced deadline has passed the NoiseTube service initiates the
distributed computation in the cloud. Note that agents from different users
can be hosted on different cloud services. A list of the participating agents is
retrieved from the DS. Agents are organized into a virtual network topology
in which distributed computations take place. This may be a simple ring
topology or something more sophisticated such as a tree for time-critical
computations. One of the agents is selected to operate as the root-node for
the specific computation via an appropriate request.

(f) The root-node coordinates a distributed computation that generates the
specified noise map. This algorithm is detailed in the following Section 6.4.

(g) When agent interactions for the distributed computation are over, the
NoiseTube service receives an encrypted aggregate noise map without any
trace of the personal data of individual users. The NoiseTube service, using
its private key, decrypts the received data to obtain the requested noise
map, which is then made available accordingly. Interested parties can log
on to the service to visualise and explore the resulting noise maps. A user’s
private information is not disclosed at any stage of the participatory noise
mapping process.

6.4 The Privacy-Preserving Computation
Privacy-preserving computation is a large field which encompasses many chal-

lenges and tools. In short, a major direction in this field is to make efficient
privacy-preserving applications for real applications. The theoretical foundations
have been set since the seminal work of Yao on secure multi-party computa-
tions [227]. It is known that theoretically any distributed computation can be
converted to a secure multi-party computation (which can be used within a
privacy-preserving computations). The problem is that the general theoretical
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Figure 6.2: Interaction diagram of the NoiseTubePrime system.

solutions are computationally very demanding to such an extent that they are
considered impractical for almost any practical application. The challenge is to
build efficient solutions to real problems. Indeed, it is possible to derive optimized
specialized solutions for particular problems. Such an example is the NoiseTube-
Prime application presented in this work. Moreover, NoiseTubePrime is also a
new approach for outsourcing computations to the cloud in a privacy-preserving
manner.

In the rest of this section, we describe the cryptographic protocol for cal-
culating noise maps in a privacy-preserving way, which is implemented by the
NoiseTubePrime agents. The communication between agents in our protocol is
performed over secure sockets (SSL/TLS). The protocol is secure in the Honest-
But-Curious (HBC) model (see Section 2.9.1 for details). We also assume that
the cloud providers are honest-but-curious, and that they do not collude with
NoiseTube to reveal users’ data. In any case, the later threat can be addressed
by deploying a threshold decryption scheme [49] .

6.4.1 The PrimeNoiseMap Problem Definition
The main goal of our work is to generate aggregate noise maps without vi-

olating the privacy of participants. The personal data which is needed for the
computation are sound level measurements, associated with the user location
and time-stamp, compatible with a particular campaign. To formalize the prob-
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lem addressed in this work, we define the abstract PrimeNoiseMap problem for
the privacy-preserving computation of participatory noise maps related to a par-
ticular measurement campaign. NoiseTubePrime is then an approach and associ-
ated system that solves the PrimeNoiseMap problem. An instance of the problem
consists of:

• N users u1, u2, . . . , uN and their geolocated, timestamped sound level mea-
surements, where N is the number of participants that have expressed in-
terest in the campaign.

• Input: The geographic area of interest (defined by minimum and maximum
latitudes and longitudes) together with the cell dimensions (e.g. 40 m×40 m)
of a grid covering that area, the time intervals of interest, the deadline for
the distributed computation and a public encryption key.

• Output: The aggregate noise map with the required statistical information
per grid cell. No personal data is disclosed during the computation.

We should note that the PrimeNoiseMap problem can be easily generalised to
pertain to different kinds of measurements (e.g. temperature instead of sound
level) and is thus relevant to other participatory sensing systems and scenarios.

6.4.2 The Distributed Protocol
We present a protocol for a privacy-preserving computation that solves the

PrimeNoiseMap problem. The protocol does not disclose any locations, times-
tamps or sound level measurements of any participants; only the final aggregate
noise map is revealed at the end of the computation.

Initially, the NoiseTube service announces that a specific campaign is planned.
The announcement includes the campaign name, the area and time period of
interest, the public encryption key and the response deadline.

When the campaign’s deadline is reached each NoiseTubePrime agent, regis-
tered with the DS for that specific campaign, receives a request for the distributed
computation as well as a corresponding deadline. Within the deadline, each agent
communicates with the user’s mobile device, and asks for any data that is rele-
vant to the specific computation instance. The user is involved in the particular
computation according to his privacy policy1. In case the user participates, the
campaign proceeds according to the steps of Section 6.3. Data relevant for the

1User privacy policy can be quite sophisticated: User may contribute to all campaigns, even
if there is no data, or only to certain ones selected manually with care. While such a broad
spectrum of strategies for user policy can be supported by our system, it is not the focus of this
work.
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Figure 6.3: An example of an aggregate noise map.

campaign is encrypted at the client side in the form of a personal aggregate map
using the campaign’s designated public key. The structure of each personal ag-
gregate map is shown in Figure 6.3. It covers the whole geographical area of the
campaign, not only the sub-area the user traversed. Each grid element corresponds
to an area for which two values are computed: the number of measurements in
the particular area (Ec), and the sum of measurements (Es), in our case sound
levels in dB(A). By the announced deadline, each NoiseTubePrime agent has re-
ceived the encrypted personal aggregate map of its user (as in Figure 6.3) in case
connectivity was possible with the mobile device.

When the computation deadline has been met, the distributed computation
between the participating personal agents can start. Initially, the NoiseTube ser-
vice selects one of the participating agents as the root-node and sends it a request
to commence the map computation. Then, the root-node agent begins the compu-
tation. The computation is performed across the agent topology which provides a
virtual distributed computation platform. Each agent receives the aggregate map
from its predecessor and multiplies each value pair (Es,Ec) with its own corre-
sponding value pair. Then the result is forwarded to the successor agent in the
topology, which repeats the same steps. This computation exploits the additive
homomorphic property of the Paillier cryptosystem [154], which is an asymmetric
cryptographic algorithm for public key cryptography (see Section 2.6 for details).
Figure 6.4 presents a simple ring topology, and illustrates how the computation
responsibility is passed from each agent to its successor.
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At the end of the computation, the aggregate encrypted map is returned to
the root-node which then forwards it to the NoiseTube service for decryption.
The NoiseTube service receives the aggregate map, decrypts it with the private
key, and calculates the measurement average for each grid element by dividing
D(Es)/D(Ec). This produces the decrypted aggregate noise map, where for each
element of the grid we have calculated the average noise value and the number
of measurements that support it.

Participating Agent 

Root Node

NoiseTube Service

Encrypted Data

Cloud Provider 

Not Participating Agent 

Figure 6.4: The NoiseTubePrime virtual distributed computation platform, where
agents are deployed in different cloud services and form a simple ring network
topology.

To avoid side-channel privacy leaks1, a user can participate even without hav-
ing data for a particular computation, by submitting a private encrypted map of
zero values. In this way, not even his own agent is aware of the fact that the user
does not have data for the particular computation. Similarly, when the mobile
device cannot establish contact with the NoiseTubePrime agent, the agent may
participate in the computation with a private encrypted map of zero values. In
this way, the agent does not need to opt out from the ring, while the final result
is the same and at the same time the privacy of its owner is protected.

The appropriate network topology depends on several factors like the number
of participating agents, the requirements for tolerance on network failures and the

1Side-channel information leaks are information leaks that an adversary can obtain from the
attributes of encrypted communications. Such side-channel leaks have been studied for example
in [38].
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limitations on the execution time. However, in this work execution time was not
critical since maps need not be computed in real-time, and our experiments with
several cloud services turned out to be fast enough. Consequently, we adopted a
simple ring topology [134], and did not investigate this issue any further.

Our protocol ensures k-anonymity (see Section 2.1.3.1), where k = N and N
is the number of all participants that took part in the computation. Furthermore,
the system could also support more statistical functions, such as covariance or
frequency distribution for each grid element. Such capabilities are presented for
example in Chapter 5.

With respect to fault tolerance, during the experimental evaluation the Noise-
TubePrime system was remarkably stable and reliable, even when the distributed
computation comprised cloud agents from three or four different cloud providers.
The only variations noticed were that some agents of a specific provider occa-
sionally needed a longer time to wake-up from their idle state; this issue was
easily addressed by executing a wake-up round before the main computation.
Overall, the behavior of the cloud services used by the agents was very reliable.
This is probably not a surprise, due to the high availability of the cloud plat-
forms provided by major players of the information technology field, like Amazon
and Google. Nevertheless, a production-ready version of NoiseTubePrime should
have some extra fault-tolerance features. For example, the directory server could
simply skip a node of the logical ring topology if it does not respond within a
predetermined time interval to its predecessor. We do not further elaborate on
such issues related to implementation improvements.

6.4.3 Security
In this subsection, we demonstrate that the proposed protocol preserves the

privacy of participants. Its security holds for the Honest-But-Curious (HBC)
model (see Section 2.9.1) both for the users and for the cloud providers. In the
NoiseTubePrime protocol, the information exchanged by agents is both aggre-
gated and encrypted; thus, honest-but-curious party cannot infer any private
information. The security of the Paillier cryptosystem (see Section 2.6) and its
homomorphic property ensures that the personal data is not disclosed and cannot
be associated with any particular user. To prove the privacy attribute of the pro-
tocol, we show that it satisfies the criterion of k-anonymity (see Section 2.1.3.1).
The NoiseTubePrime protocol offers N -anonymity in the sense that the result
computed at the end of the protocol cannot be attributed to any of the N par-
ticipating agents, even if the list of participating users is known.

To summarize, the key security features of NoiseTubePrime protocol are:

• Each NoiseTubePrime agent receives an encrypted grid from the previous
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node. It cannot obtain information about the contents of the map, because
the ciphertexts are encrypted with Paillier encryption.

• None of the cloud providers can obtain any information about the private
content stored or computed by the agents, because all data and computa-
tions are in encrypted form.

• Each node alters the ciphertexts of the computation. Even the nodes that
do not have data to participate multiply the ciphertexts with an encrypted
number ‘0’, which is the neutral element of the additive homomorphic prop-
erty of Paillier. Again it is impossible to detect that an agent contributed
with a grid consisting only of zeros.

• At the end of the protocol, only the aggregate noise map is revealed. As
a result, no individual can be associated with his own measurements con-
tributed in the computation. Consequently, the proposed protocol preserves
k-anonymity for k = N , where N is the number of all participants that took
part in the computation.

Our protocol can be extended to tolerate (at least some types of) malicious
behavior. For example, a malicious NoiseTube service could collude with poten-
tial malicious cloud providers or user agents to obtain and decrypt intermediate
results of the computation. This could possibly lead to the disclosure of the per-
sonal maps submitted by specific users. Such a threat can be effectively handled
by deploying threshold decryption [49] for the decryption of the encrypted maps.
Threshold decryption requires that the number of coordinating parties exceeds an
appropriate threshold for decryption to be possible. We leave the comprehensive
treatment of malicious user behavior within our application for future work.

6.5 Experimental Evaluation
To evaluate our approach, we developed a NoiseTubePrime prototype that

implements the proposed privacy-preserving protocol for calculating participatory
noise maps in the cloud. We used the implementation to set up an online demo
of a NoiseTubePrime use case and to execute two sets of experiments for privacy-
preserving noise map generation, showing that our protocol is able to reproduce
noise maps correctly. We also analyse the performance of our protocol, in the
context of realistic as well as artificial setups.
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6.5.1 The NoiseTubePrime Prototype
The prototype consists of two parts: the mobile application, which runs on

users’ devices, and the NoiseTubePrime agent community, which runs on (a family
of) cloud providers.

At the mobile device side, we implemented our solution on the Android plat-
form1, using Java. We have chosen Android because the existing NoiseTube sys-
tem already supports it, and because it is currently the most popular smart-
phone platform – in terms of devices being sold [84]. However, there is no reason
why our solution could not be ported to other mobile application platforms (e.g.
Java ME/CLDC or Apple iOS). For convenience, our implementation uses the
BigInteger class provided by Android (and by Java SE, but not Java ME/-
CLDC), but on platforms that do not provide a similar type or class this could
be implemented at the level of the application itself. NoiseTubePrime agents were
also implemented in Java, as Java Web Servlets (WAR). They were deployed on
several cloud infrastructure providers, namely Google App Engine, CloudBees,
and Amazon EC2, without important differences in the implementation2.

In the current stage of their development, NoiseTubePrime agents and the
Android client application do not have all functionalities that were presented in
the previous sections – in particular those parts pertaining to campaign defini-
tions are currently lacking. However, we did fully implement and test the core
of the protocol, i.e., the distributed homomorphic computations in a realistic
setting. Our prototype supports both http and https for the communication
among NoiseTubePrime agents and between the Android client and the cloud
agent. The https protocol, which makes use of encrypted communication over
secure sockets (SSL/TLS), is necessary to fully satisfy the security goals of Noise-
TubePrime. In our experiments, however, for simplicity3 we used http. Both the
mobile and the cloud application implement the Paillier cryptosystem primitives
for encrypting/decrypting data and performing secure calculations.

6.5.2 On-line Demonstration
To demonstrate NoiseTubePrime functionality, we implemented an online

demo (http://polis.ee.duth.gr/NoiseTubePrime), for a small scale experi-
ment. As a proof of concept and at the same time a validation of correctness,
our demo reproduces, in a privacy-preserving way, the results of a concrete noise

1In fact, we are targeting Android v2.2 “Froyo”, or newer versions.
2Google App Engine: http://appengine.google.com, CloudBees: http://www.

cloudbees.com, Amazon EC2: http://aws.amazon.com/ec2
3The configuration of https was a provider-specific task, which was complicated for some

of the providers.
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measuring campaign. For this purpose, we used real noise measurements col-
lected in July 2010 by volunteering citizens in a 0.4 km×0.4 km area in the city
of Antwerp in Belgium, as part of the “Ademloos experiment” set up by the
BrusSense Team [52, 188].

Figure 6.5: A screenshot of our demo.

Concretely, the campaign’s goal was to map the chosen area during a peak-
hour (7:30–8:30 am) and an off-peak hour (9:00–10:00 pm). To do this, four
volunteers from the Antwerp-based Ademloos citizen action group followed a pre-
defined measurement track twice daily for a week for each of the chosen hours.
On the basis of these measurements (over 30,000 for each week) noise maps of
the target area were produced. The standard NoiseTube approach is to analyse a
collection of measurement tracks statistically to produce one single noise map. To
do this the measured area is divided into smaller areas, the total set of measure-
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ments is divided over those areas, and a statistical analysis is carried out per unit
area. In a final step color coded averages are mapped on each pertaining area.
The resulting noise maps for this and other experiments can be found online1.

In our online demo, we deploy four NoiseTubePrime agents which represent
the four volunteers of the Ademloos experiment, and re-compute the same maps
in a privacy-preserving manner using the NoiseTubePrime protocol. The demo is
implemented with the Google Web Toolkit (GWT v2.4.0)2 and consists both of
a Web client and a server side application (servlet). The Web client is used to
control the four mobile clients of the demo and visualizes the final results. The
servlet initiates the computation, so that the four agents compute the aggregate
map from the encrypted data of their users. Moreover, for the particular demo the
servlet is used to simulate the four mobile devices. For this purpose, the original
Java classes implementing the computational task of the Android application
have been packaged within the server side servlet. The four agents have been
tested on three different cloud providers (Google App Engine, CloudBees, and
Amazon EC2). The key size of Paillier cryptosystem was chosen to be 512 bits.
A screenshot of the demo during the execution of an experiment is shown in
Figure 6.5. Each grid element corresponds to an area of 40 m×40 m.

The time needed by the NoiseTubePrime cloud agents for the multiplication
of the encrypted maps, fluctuates between 875 to 1614 ms, which is acceptable
for a grid of 21×18 elements. Note that this includes the time for receiving and
transmitting the aggregate encrypted map, because we had no simple way to
separate these two quantities from the cloud providers logs.

6.5.3 Computational Performance Evaluation
To evaluate the computational requirements of the NoiseTubePrime system

for a wide range of realistic problem sizes and security parameters we conducted
a large set of experiments using noise data which was generated artificially rather
than actually measured. These comprised performance evaluation both of the
mobile device-based computation and the distributed cloud-based computations.
Naturally, the location trace of each simulated user and the number and the
values of the corresponding noise measurements have only negligible impact on
the computational requirement of the NoiseTubePrime application. Instead, the
running time of the application is dominated by the size of the noise map, which is
determined by the number of grid elements, and the size of the encryption keys.
Thus, the computational requirements for processing the artificial data closely
resembles the corresponding task on real data.

1http://www.brussense.be/experiments/
2http://code.google.com/webtoolkit/
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Figure 6.6: Execution times of encryption by the mobile client running on a
Samsung Galaxy Note II.

The NoiseTubePrime solution comprises two main computational tasks (given
that the noise measurements are collected through the existing NoiseTube applica-
tion): The preprocessing step (encryption of the local map, step (c) in Section 6.3)
which is executed locally on the mobile devices, and the distributed computation
step (merging of the encrypted maps, step (f) in Section 6.3) which is outsourced
to the personal agents located in the Cloud.

The first set of experiments concerns the computation task of the mobile
devices, which have to prepare the encrypted map for each user. This task is highly
parallelizable, and thus we can fully exploit the multi-core CPU architectures of
modern mobile devices. In Figure 6.6 we show the execution times of the data
encryption step that is performed by a mobile device for different map and public
key sizes. In this experiment, we used the Android smartphone Samsung Galaxy
Note II, which comes with a quad-core CPU ARM Cortex-A9 at 1.6 GHz and
2 GB of RAM. While execution times may run up to a few minutes, in particular
for large maps, we note that the running time of this task is not critical for
the NoiseTubePrime application, since it can be executed in batch mode as a
background task on the mobile device at any time before the deadline of the
specific campaign. It would also be possible to completely hide the running time of
this preprocessing task, for example by incrementally building the local encrypted
map during the noise sampling phase; a background process of the mobile device
could immediately encrypt every new measurement and merge it with the local
encrypted map.
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Figure 6.7: Execution times of encryption by the mobile client running on different
mobile devices.

Next we examine how the execution time of the mobile application may vary
between different mobile devices. In Figure 6.7 we show the execution time of the
data encryption step that is performed on five different modern mobile devices, a
Samsung Galaxy Note II (4-core CPU), a LG Nexus 4 (4-core CPU), a Samsung
Galaxy S II (2-core CPU), an Asus TF101 (2-core CPU) and an HTC HD2
(single-core CPU). In these experiments the key size of the Paillier cryptosystem
was fixed at 512 bits. Execution times do not vary substantially, at least not for
the chosen set of devices. However, we do clearly see the effect of the parallel
nature of the problem by the difference in single, dual and quad-core curves.

With respect to the Web-based component, Figure 6.8 shows how the execu-
tion time of the distributed computation in the cloud varies with respect to the
number of NoiseTubePrime agents. In this simulation we deployed agents on a
single cloud provider (Google App Engine), in a simple ring topology and with
512 bits Paillier keys. We use a single cloud provider in this set of experiments
so as to minimize delays due to network transmission and as a result, we mainly
capture the processing time of the cloud agents. Figure 6.8 shows that the total
time for the distributed computation increases almost linearly with the number
of agents, while the size (number of cells) of the map has only a small impact on
the running time. In particular, for map sizes 15 × 15, 25 × 25 and 35 × 35, the
delay per node is approximately 1.22, 1.26 and 1.31 seconds respectively.

We consider the execution times in all the above experiments to be entirely
acceptable for noise mapping campaigns. There are of course feasible ways to
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Figure 6.8: Execution times of computation in the cloud with artificially generated
noise data.

improve the computational performance further, if necessary. The mobile device
application can be further optimized by using more advanced programming tech-
niques such as Renderscript [165] for the encryption process. Renderscript offers
a high performance computation API for Android devices that gives the ability to
run operations with automatic parallelization across all available processor cores
of a device such as the CPU, GPU and DSP. On the other hand, the execution
time of the cloud agent computation can be reduced by using a more efficient
virtual topology, which would increase the concurrency of the distributed com-
putation, by requesting more powerful resources from the cloud providers and
by compressing the data that is transmitted during the distributed computation.
However, we repeat that because both transmission of data as well as producing
the agglomerated map are not required to proceed in real-time any delays that
we find do not pose a concern.

6.5.4 A Realistic Use-Case of NoiseTubePrime
For our final experiment we set up what we consider to be a realistic use case

of noise mapping and the NoiseTubePrime application. In this experiment we rely
on a data set of real noise measurements gathered by 93 users in a 4 km2 area in
the city of Brussels, Belgium. The data set comprises 409.768 measurements at an
average of 4.406 measurements per user, gathered in an uncoordinated way over a
long period of time and including calibrated as well as uncalibrated devices. The

121



6.5 Experimental Evaluation

largest user contribution consists of 76.337 and the smallest of 12 measurements1.
With respect to privacy, we assume a mixed environment specified by user

preference. In this way we consider two user types: “conventional” NoiseTube
users, who contribute their data in plain format, and privacy-sensitive Noise-
TubePrime users, who wish to share data only in a privacy-preserving way. Based
on this assumption, we conducted a realistic set of experiments with a varying
number of privacy-sensitive users.

With respect to the cloud platforms, we assumed heterogeneity too. Agents of
the privacy-sensitive users run on three possible platforms: two commercial cloud
providers, CloudBees and Google App Engine, and a server running in our lab. We
performed a series of experiments with a gradually increasing number (up to 40
out of a total of 93) of privacy-aware users that deploy NoiseTubePrime agents,
while the remaining users participate in the campaign as conventional NoiseTube
users. In all experiments, the numbers of the agents assigned to each provider
satisfy the ratio 1:1:2 for Google App Engine, CloudBees and the own server,
respectively. For example, in the case of 40 privacy-aware users, we deployed 10
agents on the Google App Engine, 10 agents on CloudBees, and 20 agents on our
own server.

We used a simple ring topology where the sequence of agents alternated be-
tween those residing on a cloud provider and on our own server. Note that this se-
quence of agents corresponds to a worst-case scenario with respect to the network
load, since it generates the maximum possible network traffic for the particular
mixture of agents.

Figure 6.9 shows how the execution time of the distributed computation varies
with respect to the number of NoiseTubePrime agents and public key sizes. The
map size is 100×100 elements and each grid element corresponds to an area of
40 m×40 m. In each experiment we also verified that the final aggregated noise
map of the privacy-preserving and the conventionally computed results were iden-
tical.

We again find computation times which evolve linearly with the number of
cloud agents. Moreover computation times are of a duration that is perfectly
acceptable for a map of this size. Indeed, even without a privacy-preserving com-
putation producing a noise map for this amount of measurements typically takes
up a couple of minutes, and moreover we stress once more that producing noise
maps is not something that is required to happen in real-time.

1Because of the heterogeneous nature of this dataset we have no guarantee about the quality
of the resulting noise map and therefore choose not to include it here. However, that does not
affect the usefulness of this dataset for the purpose of evaluating the NoiseTubePrime privacy-
preserving map computation system.
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Figure 6.9: Execution times of computation in the cloud with real noise measure-
ments.

6.6 Related Work/Discussion

6.6.1 On Privacy-Preserving Participatory Sensing
Privacy protection in mobile sensing systems [126] has recently attracted the

interest of the scientific community. Because users of a participatory sensing sys-
tem play an active role in the data collection process, it has been argued that
they should also be actively engaged in privacy-related decisions [182], e.g. where
and when to measure and what to share which whom. It has also been argued
that, in order to protect user privacy and increase their negotiating power, data
collection and data sharing should be decoupled by introducing a personal data
vault that stores a user’s data in a secure manner (i.e. encrypted), from which he
can then selectively share subsets with various services or campaigns [79]. This
idea is one of the ingredients of the NoiseTubePrime system presented above.

A comprehensive approach for opportunistic sensing is presented in [114].
The area under consideration is divided into appropriate regions (tessellation
procedure), which have to be sufficiently large to preserve user anonymity. A
similar approach is used in [40], where area cloaking is used to offer k-anonymity.
The NoiseTubePrime approach is simpler and does not require any specific area
division to preserve user privacy.

A very interesting related work is the PriSense system [181] which is based on a
data slicing technique [102], and can offer functionality comparable to NoiseTube-
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Prime for additive aggregation functions. However, the homomorphic encryption-
based approach of NoiseTubePrime is simpler – no data scattering has to take
place – and seems to be more general since homomorphic encryption is not lim-
ited to additive functions. Moreover, due to its simplicity, the NoiseTubePrime
approach should be less error-prone.

In [21] the authors use advanced algorithmic techniques like sketches and
approximate set cover to compute approximate statistic results in a privacy-
preserving way. While theoretically interesting, in our opinion this approach is
too complicated to be applied in practical, real-world settings, as opposed to
NoiseTubePrime.

With respect to existing work, NoiseTubePrime is a simple but at the same
time powerful approach for privacy-preserving participatory sensing, and to the
best of our knowledge, the first operational privacy-preserving solution for partic-
ipatory sensing. Moreover, NoiseTubePrime minimizes the requirements for the
user by outsourcing the distributed computation to freely available cloud ser-
vices1. NoiseTubePrime is based on plausible assumptions, is efficient for our
purposes (as is shown in Section 6.5), has no requirements for special infrastruc-
ture and does not make any compromises in the quality of the computed results
like cloaking or tessellation do. Similarly to PriSense, NoiseTubePrime is user-
centred but, unlike PriSense, it can also support multiplicative functions by using
an appropriate homomorphic cryptosystem.

6.6.2 On Using Cloud Agents for Preserving Privacy
The NoiseTubePrime software agents that we introduce in this work are based

on the related idea of the Polis platform (Chapter 3) where each user is rep-
resented by a Polis agent. In a nutshell, Polis is a personal data management
framework that abides by the following principle: every individual has absolute
control over his personal data that reside only at his own side. The Polis agents
constitute the backbone of the Polis architecture and run on the users’ side; they
are used to manage the personal data of a user, and provide controlled access
at the entity’s data. The service providers request personal data items of users
from their personal agents. The agents provide the requested data if there is a
corresponding license agreement (policies).

NoiseTubePrime agents are deployed in the cloud as Web services and are
located on public servers, in contrast with Polis agents that are on the users’
side. To avoid the obvious disclosure of personal data to cloud providers, only

1The requirements for computation and networking per user are very low and are served
for free by several independent cloud providers. In addition, there is no reason why these needs
would not continue to be served for free or, in the worst case, at a very low cost in the foreseeable
future.
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data in encrypted form is uploaded to the agents. The encryption of data solves
both security and privacy issues that we have in clouds. Furthermore, Noise-
TubePrime agents host only data that is destined for particular computations,
and not all personal data, such as Personal Identifiable Information (PII), of
users. For common security requirements like authentication of users who have the
right to add personal encrypted data and to participate in a specific distributed
computation, we can use standard security measures. Finally, the main reasons
why we deploy our agents in the cloud are:

• Agents have to be online continuously during the distributed computation;

• Several cloud computing providers offer free services for low computational
and bandwidth requirements, which are sufficient for our goals;

• The network connectivity offered by cloud infrastructures is fast and reli-
able, unlike mobile data connections;

• The cloud offers scalable computational resources.

6.7 Conclusion
This work presents a novel, privacy-preserving architecture for the creation of

participatory noise maps, called NoiseTubePrime and built on top of the Noise-
Tube system [136, 188]. NoiseTubePrime allows aggregate noise maps to be gen-
erated from data collected by multiple users without disclosing their location
traces. The resulting maps are exactly the same as those generated with conven-
tional grid-based aggregation methods, as applied in [52]. However, our system
allows users to preserve their privacy, and thus contributes to the realization of
trustworthy computing systems. Our approach implements the ‘fair information
principle’ as privacy is respected when information is collected [145]. The protec-
tion of privacy is achieved by using cryptographic techniques and performing a
distributed computation within the network of agents. The distributed computa-
tion is performed on encrypted data and no personal data items are disclosed to
anyone, including the cloud service providers, at any time. Finally, we developed
a prototype implementation and presented experimental results using a heteroge-
neous set of commercial cloud services, confirming the viability and the efficiency
of the proposed solution.

Key features of the NoiseTubePrime system include:

• Accurate aggregate statistics are computed using the private measurement
data of each user, while at the same time the privacy of the participating
users is preserved: No location/time data is disclosed.
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• Outsourcing the NoiseTubePrime agent to the cloud relieves the user from
the trouble to run and manage his own software agent and to maintain per-
manent Internet access. The computational and networking requirements
of each software agent are low and are (currently) provided without any
cost by the various cloud service providers we used in our experiments.

• The main task of the NoiseTube service is to decrypt the final encrypted
noise map that is the result of the distributed cloud computation. Hence the
computational work of the NoiseTube service is independent of the number
of participating users, making NoiseTubePrime a decentralized system that
theoretically can be scaled to handle very large numbers of users.

The NoiseTubePrime architecture strikes a sound balance between providing
secure, yet straightforward, privacy protection for those contributors that want or
require it, while maintaining transparency for those that do not. We believe that
the privacy-preserving solution presented in this work can make participatory
sensing platforms like NoiseTube more suitable for large-scale (e.g. city-wide) de-
ployments, in which the privacy concerns of individual contributors are expected
to be significantly higher than in previous small-scale noise mapping campaigns
[188, 52] – due to higher numbers of participants, weaker (or absent) acquaintance
and trust relationships, and possibly the involvement of authorities.

Our future plans are to develop a stable and more complete version of Noise-
TubePrime and demonstrate its use for real-world campaigns, also extending the
platform towards more statistical parameters. To accomplish this we have to ex-
tend our prototype implementation. Roughly, the user-side Android application
has to be to enriched with features supporting user policies and campaign partic-
ipation and the resulting code has to be integrated into the existing NoiseTube
Mobile for Android application1, and then released to the public. The prototype
NoiseTubePrime servlet, which implements the server side of our application,
has to be extended with auxiliary functionalities for public key management,
campaign management and a DS for supporting the distributed computations2.
Current and future NoiseTube users should be oblivious to these privacy exten-
sions insofar as possible. In the future a user study could be set up to evaluate
the overall usability of the solution in different contexts.

Last but not least we should stress that the proposed architecture for privacy-
preserving sharing, transmission, processing and management of sensitive (spa-
tial) data is independent of the noise domain, and can thus potentially be applied

1https://play.google.com/store/apps/details?id=net.noisetube.
2We note that the NoiseTube system as it stands is currently undergoing a transition to

support campaigns. However, the privacy extensions proposed in this article are not yet in-
cluded.
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in other participatory sensing systems. The only constraint is that the parameters
of interest can be computed with efficient homomorphic cryptosystems.
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Chapter 7

Privacy-Preserving Television
Audience Measurement using
Smart TVs

7.1 Introduction
Television is nowadays one of the dominant mediums for information and

entertainment. Information about television audiences provide valuable insights
to broadcasters and the advertising industry on recent trends. Television Audience
Measurement (TAM) systems aim at calculating qualitative and quantitative TV
audience measurements. For example, Nielsen1, one of the leading companies in
the field of media audience measurement, uses measurements from approximately
18,000 households (February 2010) in the U.S.A. to create the estimates the TV
networks use. The viewer data is collected by the special metering equipment
installed on the TV sets of the participating households; this data is transferred
directly to the company’s servers. Apparently, the above measurement process
raises important privacy issues for the participants. A person’s viewing record
can reveal sensitive information about the person’s preferences and habits. A
privacy-preserving method for creating accountable TAMs is needed, in order to
utilize television ratings information, while protecting the participants’ privacy.
Additionally, since TAM data bring important financial benefits to the industry
(broadcasters, advertising companies, commercial products and more), some kind
of fair financial compensation should be offered to the users that provide their
viewing records.

Advances in communication and entertainment technologies have recently led
to the introduction of Smart TVs, which are expected to be the next logical step in

1http://www.agbnielsen.net
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television technology. The term Smart TV 1 is used to describe the current trend
of integration of the Internet and Web 2.0 features into modern television sets and
set-top boxes, as well as the technological convergence between computers and
these television sets/set-top boxes. These new devices most often also have a much
higher focus on online interactive media, Internet TV, over-the-top content, as
well as on-demand streaming media, and less focus on traditional broadcast media
like previous generations of television sets and set-top boxes always have had.
For example, they allow viewers to check YouTube, Facebook, and other popular
websites while watching TV. In essence, Smart TVs bring the Internet into the
living room. As the technology improves, many of these sets are becoming as
capable as standard computers when it comes to web browsing and even Internet
video. This combination of traditional TV functionality with computational and
networking capabilities, makes Smart TV technology capable of a whole new set
of applications.

Modern Smart TVs from companies like Samsung and Sony have two major
advantages over DVRs and set-top boxes. Many newer sets actually have full
browsers, which means that content isn’t restricted. Additionally, more recent
initiatives, like the Google TV2 platforms, also come with app stores, similar in
design to the app store that Apple introduced for the iPhone. Apps add function-
ality to a Smart TV with video games, sports updates, specialized channels and
much more. These apps are cheap or free and have already been used in exciting
ways to make television viewing more interactive.

In this work, we present PrivTAM [66], a system for privacy-preserving TAM
using Smart TV technology. The core of PrivTAM is a privacy-preserving cryp-
tographic protocol, which accepts as input the viewing records from users’ Smart
TVs and performs secure multi-party computations [227] to calculate the TAMs.
PrivTAM satisfies the following requirements for a reliable, privacy-preserving,
TAM:

• Privacy - all records must be secret.
• Completeness - all valid records must be counted correctly.
• Soundness - dishonest records cannot disrupt the measurement process.
• Unreusability - no user can submit their record more than once.
• Eligibility - only those who are allowed to participate can submit their

records.
• Verifiability - nobody can falsify the result of the TAM process.

The above requirements are a subset of the typical requirements of e-voting
systems [161] and thus, our system borrows techniques from this field [20, 118,

1http://en.wikipedia.org/wiki/Smart_TV
2http://www.google.com/tv/
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124]. In addition, functionalities for the financial compensation of the participants
are supported. The computations of PrivTAM are performed between software
agents, which are located at the participants’ Smart TVs, and a Trusted Author-
ity (TA). Each Smart TV has an agent which continuously collects the viewing
records of its owners.

The Trusted Authority coordinates the computation, verifies the validity of
the records, collects the encrypted results and provides the compensation to the
participants. This process is performed using encrypted viewing records, hence the
record contents are never revealed to the Trusted Authority. Finally, we develop
a prototype implementation and perform experiments that confirm the feasibility
of the approach.

Some of the advantages of our approach in comparison to traditional TAM
systems are:

• Preserving the privacy of participants’ viewing records.

• More reliable measurements can be achieved, since a practically unrestricted
number of participants can produce the PrivTAM results.

• Supports fine grained measurements which can be automatically calculated
in small time intervals as well as specific one-time queries.

• Reducing the cost for conducting a TAM. No specialized equipment is re-
quired and only the participants in a calculation need to be compensated.

• Supporting measurements using records from any Internet-enabled broad-
casting medium (e.g., Broadcast TV, Cable TV, IPTV and Satellite TV).

Our solution requires Smart TV’s to have permanent Internet access, a re-
quirement which is satisfied by default. Moreover, the computational and net-
working requirements of PrivTAM can be easily fulfilled by modern embedded
Android-based platforms.

7.2 Related Work
To our knowledge this is the first attempt at creating a privacy-preserving

TAM system, particularly one that supports an arbitrarily large amount of par-
ticipants. In general, TAMs are products of aggregation operations and therefore
our work is related to common privacy-preserving aggregation systems. For exam-
ple, in [181], privacy-preserving data aggregation in people-centric urban sensing
systems is discussed. A market for personal data, supporting anonymous data ag-
gregation operations is presented in [6]. The economic aspects of personal privacy
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are discussed in [201, 3]. The fact that individuals need to be in control and be
compensated when their personal information is used for commercial purposes, is
discussed in [122, 192]. The sensitivity of the viewing records is stressed by both
the Video Privacy Protection Act [198] and the Cable TV Privacy Act [197].

Overall, we consider that PrivTAM lies between privacy-preserving aggrega-
tion systems and e-voting systems, offering verifiable, privacy-preserving, aggre-
gation functionalities. Additionally, PrivTAM takes into account the economic
aspects of privacy and supports compensation functionalities for the measure-
ment subjects.

7.3 The PrivTAM System
An overview of the PrivTAM system architecture, built on top of Smart TV

technology, is shown in Figure 7.1. The main parts of the architecture are the
participating Smart TVs, the Television Audience Measurement Service (TAM
Service) and the Trusted Authority (TA). Every Smart TV contains a software
agent that collects and stores its viewing records and maintains a set of demo-
graphic elements, such as gender, age and educational level of the viewers. The
agent manages the viewers’ personal data, provides controlled access to the data,
and has the ability to participate in distributed protocols and computations.

Smart TV1

TAM Service

Trusted Authority

Smart TV 
Agent

Smart TV2

...

Smart TVN

Participating Smart TVs

Viewing
Records

Internet

TV Viewer

TAM Broker

Figure 7.1: The general architecture of our system.

The TAM Service collects the measurements and is responsible for coordinat-
ing the distributed key generation [151] for the public-key cryptosystem between
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itself and a group of L TV agents. These L agents are chosen with a verifiable
random selection [75] and participate in both the public-key creation phase and
the decryption of the results phase. The selection of the set of L agents can be re-
peated on a regular basis, for example every one or few days. With each execution
a new set of agents will have the responsibility of the procedure of distributed
key generation. The verifiability of the agents’ random selection can be found in
Section 7.4.2.

The TA is responsible for coordinating the PrivTAM computation process.
Time is divided into consecutive intervals, and for each interval, an aggregate
result is periodically calculated using input from the participating Smart TV’s.
Many conventional TAM systems, for example, report audience results for inter-
vals of 15 minutes. PrivTAM can obtain equivalent results by using the same
interval value. The TAM Broker is used to facilitate the (optional) payment func-
tionality described in Section 7.4.2. Each Smart TV agent encrypts its viewership
vector with the public-key of the measurement and sends it to the TA for verifi-
cation. The verification of the encrypted vector requires a cryptographic protocol
that is described in Phase 2 of Section 7.4.2. Following a successful verification,
the TA adds this vector to the current encrypted result of the measurement. The
final encrypted TAM is transmitted to the participants in the distributed key
generation for decryption and the result is revealed.

7.4 The PrivTAM Protocol
In this section, we present the cryptographic protocol used in PrivTAM. The

communication between the entities in our protocol is performed over secure sock-
ets (SSL/TLS) with both server and client authentication enabled. Our protocol
is secure in the Malicious Model, assuming that the TA and the TAM Service are
Honest-But-Curious (HBC) (see Section 2.9.1). During the calculation the actual
users’ personal data are not disclosed in any stage of the process, but only the
final results are revealed at the end. Regarding privacy, the question we address
is how to achieve privacy of type (b) (see details in Section 2.1.4), that is, how
to compute the TAMs without pooling the viewing records, and in a way that
reveals nothing but the final TAM results of the computation.

7.4.1 Problem Definition
We define the PrivTAM problem for verifiable, privacy-preserving TAM. A

PrivTAM problem instance consists of:

• N Smart TVs - TV1, TV2, . . . , TVN and the viewing records of their own-
ers.
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– Input: The viewership vector of each owner.
– Output: The TAM for the participating viewership vectors.

We assume that one viewership vector is submitted per Smart TV. We do not
consider user identification issues within family members, as this is an existing
issue in TAM systems and is out of the scope of this work. In current TAM
systems the recording equipments is able to identify the members of the family
who watch TV by using dedicated remote controls per family member. This could
also be achieved on the Smart TV application, adding a simple interface on the
device where the user can select who they are. Alternatively advanced techniques
for user identification can be used, like face recognition.

7.4.2 Outline of the Computation
The computation consists of three main phases. In Figure 7.2, the participat-

ing entities of each phase are illustrated. The full descriptions of the three phases
are given in the following paragraphs.

• In Phase 1 a distributed key generation for a Threshold Paillier Cryptosys-
tem is performed.

• In Phase 2 the privacy-preserving TAM calculation takes place.

• In Phase 3 the final encrypted TAM is forwarded for decryption and the
result is announced.

Participating TV Agents

Group of Agents in Phase 1 & 3

Group of Agents in Phase 2Trusted 

Authority

TAM Service

Figure 7.2: Illustration of protocol participants.

Phase 1. During Phase 1 the TAM Service selects an L-sized subset of the N -
sized set of all the participating TV agents with a verifiably random procedure.
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An example of a publicly verifiable random selection process is described in [75].
With the last phrase, we mean that the L agents are really randomly selected and
the TAMS can prove that they are really random agents. This technique prevents
the TAM Service from making a biased or impeachable group selection. Then,
the TAM Service and the L selected TV agents execute a cryptographic protocol
for the distributed key generation of the Threshold Paillier Cryptosystem [49].
We use the following Threshold Decryption Model, which is an adaptation of the
corresponding definition in [20] to our needs, so that the distributed key genera-
tion can be performed without a trusted dealer [151]. Avoiding a trusted dealer
makes the PrivTAM system more relevant for the TAM application context. This
approach makes the Threshold Paillier Cryptosystem feasible in practice.

Definition 6 (Threshold Decryption Model) In a threshold cryptosystem,
instead of merely decrypting the encrypted message, we use n parties Pi with their
secret keys, so that at least t parties, where t ≤ n, are required to decrypt the
message. The decryption process includes the following players: a combiner (can
be one of the n parties), a set of n parties Pi, and users. We consider the following
scenario:

• In an initialization phase, the parties use a distributed key generation al-
gorithm to create the public key PK of their private keys SKi. Next the
parties publish their verification keys V Ki.

• To encrypt a message, any user can run the encryption algorithm using the
public key PK.

• To decrypt a ciphertext c, we forward c to the combiner and n parties.
Using their secret keys SKi and their verification keys V Ki, each party
runs the decryption algorithm and outputs a partial decryption ci with a
proof of validity of the partial decryption proofi. Finally, the combiner uses
the combining algorithm to recover the cleartext, provided that at least t
partial decryptions are valid.

In PrivTAM, we use the Paillier public key generated in Phase 1 for the encryption
of the viewership vectors and utilize the Pailler Cryptosystem’s homomorphic
property in Phase 2. In addition, we specify that t is equal to n in our Threshold
Decryption Model, meaning that all the parties are required to decrypt a message.
Setting t = n is important to ensure that the final result cannot be decrypted
without the active participation of the TAM Service. Phase 1 should be repeated
occasionally, to renew the keys and the set of L agents.

Phase 2. During this phase, the TA coordinates the voting process, and collects
and verifies the encrypted viewership vectors of the participants. Upon successful
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verification, the TA adds the submitted viewership vector to the current TAM
result, and sends the compensation to the participant.

In detail, Phase 2 begins with the TV agents that hold viewing records for
the particular time period, creating their viewership vectors (Figure 7.3). Each
such vector is submitted to the TA for the verification. The verification process
is based on a zero-knowledge proof that an encrypted message lies in a given set
of messages [20]. This way, when encrypting a message, it is possible to append
a proof that the message lies in a public set S = {m1, · · · ,mp} of p messages
without revealing any further information. This proof is described in detail in
Section 7.5.

Channel1 Channel2 Channelm...

...

Age

Gender

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Age

Figure 7.3: Example of a viewership vector.

In Figure 7.3, the viewership vector for m TV channels is illustrated. The
vector section for each channel consists of a number of ciphertexts, which result
from the number of demographic elements used in the vector. Every demographic
element is respectively represented by some ciphertexts that its number depends
on the number of parts that is separated the demographic element. Additionally,
in our case the two demographic elements are dependent elements because we
want to know the ages of each gender and they are represented as one element.
Of course, it is possible to have and independent elements in our measurements.
In our example, these elements are the age group and the gender of the viewer.
The gender categories are male and female and the age groups are “Age1 ≤ 24”,
“25 ≤ Age2 ≤ 40”, “41 ≤ Age3 ≤ 55” and “Age4 > 55”. Consequently, a combi-
nation of 8 ciphertexts is created to represent these elements. In order to indicate
the channel the viewer was watching, the representation of their demographic el-
ements are added to the viewership vector section for the corresponding channel.
For example, in our case the gender is female, the age is between 25 and 40 years
old and she was watching Channel1. All the values in the viewership vector lie
in the public set S = {0, 1} and they are encrypted using the public key that is
generated in Phase 1. Every participant should prove that their vector is valid so
that the TA can avoid any malicious behavior from them. More specifically, the
participants should prove that:

1. Every ciphertext in the viewership vector should lie in the set S = {0, 1}.

135



7.4 The PrivTAM Protocol

2. The multiplication of the ciphertexts in every channel should lie in the set
S = {0, 1}.

3. Finally, the multiplication of all ciphertexts in the viewership vector should
equal to “1”. This means that the participant was watching TV.

The multiplication of the ciphertexts in the above proofs utilizes the additive
homomorphic property of the Paillier Cryptosystem [154] (see details in Sec-
tion 2.6). In Table 7.1, you can see in details the various levels of the above
proofs.

Channel1 Channel2 . . . Channelm

Ciphertexts of
viewership vector

E1,1 E1,2 . . . E1,δ E2,1 E2,2 . . . E2,δ . . .
Em,1 Em,2 . . . Em,δ

1st Level Proofs P1,1 P1,2 . . . P1,δ P2,1 P2,2 . . . P2,δ Pm,1 Pm,2 . . . Pm,δ

Multiplication of
ciphertexts per

channel
E1 =

δ∏
d=1

E1,d E2 =
δ∏

d=1

E2,d . . .
Em =

δ∏
d=1

Em,d

2nd Level Proofs P1 P2 Pm

Multiplication of
all ciphertexts

E =
m∏

ch=1

δ∏
d=1

Ech,d

3rd Level Proof P

1st and 2nd Level of ZKPs: Ciphertexts should lie in the set S = {0, 1}.
3rd Level of ZKP: Ciphertext should equal to “1”.

Table 7.1: The levels of proofs for a viewership vector.

Once the viewership vector is confirmed by the TA, the vector is multiplied,
using the homomorphic property, with the current TAM result. More specifically,
every ciphertext of the viewership vector is multiplied with the corresponding
ciphertext of the current TAM by taking advantage of the homomorphic property.
We assume that the TA only logs the participants in a measurement in order to
ensure unreusability of the vectors. However, even if the vectors were stored, the
TA would not be able to reveal their contents, unless all the participants of the
threshold decryption are malicious and collude towards this purpose. The final
result of Phase 2 is the encrypted TAM of the particular query, which ensures
k-anonymity (see Section 2.1.3.1), where k = N and N is the number of all
participants who take part in the TAM.

Payments in PrivTAM. The PrivTAM system can support functionalities
for the compensation of participants, either in the form of financial payments
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or in the form of vouchers or points. The requirement for a participant to be
compensated is that they provide a valid viewership vector to the computation.
After the successful verification of a participant’s viewership vector, the TA sends
the compensation to the participant.

In case of financial compensation, the payment scheme within PrivTAM needs
to be efficient enough to facilitate large numbers of small amount payments, with-
out entailing substantial transaction costs. Therefore, we draw techniques along
the lines of micropayments, as proposed in [174]. The main actors in micropay-
ment schemes are Brokers, Vendors and Users. A User becomes authorized to
make micropayments by the Broker. A Vendor receives micropayments from au-
thorized users and redeems them through the Broker. Relationships of Users and
Vendors with the Broker are long term. In PrivTAM, the Smart TV owners can
act as Vendors and the TA can act as a user making micropayments. The TAM
Broker is introduced in the architecture to facilitate the payments (Figure 7.1). A
micropayment scheme suitable for PrivTAM is Payword, presented in [174]. Pay-
word is a credit-based scheme, based on chains of hash values (called Paywords)
and the Broker does not need to be online in order for a transaction between a
User and a Vendor to take place.

Alternatively, non-monetary compensation, including points that can be re-
deemed with participating companies, can be offered to participants. The amount
of compensation for each PrivTAM calculation is fixed for simplicity, but methods
for providing different pricing could be introduced into the system. It is impor-
tant to stress that the collected points of each participant are not recorded in a
profile by a centralized service, but are kept at the participant’s side.

Phase 3. In Phase 3, the final encrypted result of Phase 2 is forwarded to the
L selected TV agents of Phase 1 and the TAM Service. The L agents perform
partial decryptions and send the results to the TAM Service which acts as the
final participant and combiner of the threshold decryption. This way, only the
TAM Service can see the final result of the calculation, which is acceptable if the
TAM Service is considered honest and reports accurately the decrypted result. In
order for the PrivTAM calculation to be protected from inaccurate reporting of
the results from the TAM Service, a verification mechanism can be introduced to
validate the announced results. This verification could be accomplished by using
multiple combiners in the threshold decryption, to confirm the announced results
from the TAM Service.
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7.5 The Protocol’s Security
In this section, we show that the PrivTAM protocol achieves the requirements

described in the introduction, i.e., privacy, completeness, soundness, unreusabil-
ity, eligibility, and verifiability. The security model holds for Malicious viewers,
with the assumption that the TA is Honest-But-Curious (HBC) and the TAM
Service is the final receiver of TAM results. Malicious users can submit any value
as input to the computation or even abandon the protocol at any step. See the
description of the Malicious Model given in Section 2.9.1 or the more detailed
description in [121, 91]. An Honest-But-Curious party (adversary) follows the
prescribed protocol properly, but may keep intermediate computation results,
e.g. messages exchanged, and try to deduce additional information from them
other than the protocol result.

In the PrivTAM protocol described above, the information exchanged by TV
agents is encrypted with the Paillier cryptosystem [154], which is known to offer
Semantic Security [95], that is, it is infeasible for a computationally bounded
adversary to derive significant information about a message (plaintext) when
given only its ciphertext and the corresponding public encryption key. More de-
tails about the semantic security of Paillier scheme (known and as Decisional
Composite Residuosity Assumption (DCRA)) you can find in Section 2.6. Fur-
thermore, the security analysis of the Threshold Version of Paillier Cryptosystem
is described in [151].

The security of the Threshold Paillier cryptosystem and its homomorphic
property ensures that the viewing records are never disclosed and cannot be asso-
ciated with any particular participant. To prove the privacy attribute of the pro-
tocol, we show that it satisfies the criterion of k-anonymity (see Section 2.1.3.1).
In the context of this work, k-anonymity means that no less than k individual
users can be associated with a particular personal viewing record.

The following zero-knowledge proof illustrates the steps of the verification
process in Phase 2. The security of this zero-knowledge proof is shown in [20].

Proof that an encrypted message lies in a given set of messages [20].
Let N be a k-bit RSA modulus, S = {m1, · · · ,mp} a public set of p messages,
and c = gmirN mod N2 an encryption of mi where i is secret. In the protocol,
the prover P convinces the verifier V that c encrypts a message in S.

1. P picks at random ρ in Z∗
N . He randomly picks p− 1 values {ej}j ̸=i in ZN

and p − 1 values {υj}j ̸=i in Z∗
N . Then, he computes ui = ρN mod N2 and

{uj = υN(gmj/c)ej mod N2}j ̸=i. Finally, he sends {uj}j∈{1,··· ,p} to V .

2. V chooses a random challenge e in [0, A[ and sends it to P .
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3. P computes ei = e −
∑

j ̸=i ej mod N and υi = ρreig(e−
∑

j ̸=i ej)÷N mod N
and sends {υj, ej}j∈{1,··· ,p} to V .

4. V checks that e =
∑

j ej mod N and that υN
j = uj(c/g

mj)ej mod N2 for
each j ∈ {1, · · · , p}.

We note that r is the random number which was used for the encryption of
message mi and a ÷ b is the quotient in the division of a by b. According to
Theorem 2 of [20], it holds that t iterations of the above protocol is a perfect
zero-knowledge proof (against an honest verifier) that the decryption of c is a
member of S, for any non-zero parameters A and t such that 1/At is negligible.

The main security features of the protocol are discussed below. Note that
these features can also expressed in a more way, for example by using the tools
of [17]. In Table 7.2, we show the summary of the data items (encrypted or not)
that are generated with our approach combined with the participating entities.
The main security features are:

• The TA cannot obtain information about the contents of the viewership
vector (3(1) in Table 7.2) and the encrypted TAM result (3(4)), since the
ciphertexts are encrypted with the Paillier encryption.

• In case the TA stores the viewership vector (3(1)), the contents cannot be
revealed unless all the participants in the threshold decryption are malicious
and collude towards this purpose.

• The participants cannot submit invalid viewership vectors (3(1)) and dis-
rupt the calculation, due to the verification process.

• None of L selected TV agents can obtain information about the content of
the final encrypted TAM result (3(5)), since the collaboration all of them
and the TAM Service is required to reveal the TAM result in plain form.

• The TAM Service can learn the content of the encrypted TAM result (3(3))
if and only if the L agents (all of them) send the partial decrypted results
to it.

• At the end of the protocol, only the aggregate TAM result (3(2)) is revealed.
As a result, no individual can be associated with the viewership vector that
they submitted. Consequently, the proposed protocol preserves k-anonymity
for k = N , where N is the number of all the participants who take part in
the measurement.

• In order to be protected from inaccurate result (3(2)) reporting from the
TAM Service, multiple combiners can be introduced in Phase 3, to confirm
the announced results.
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Data items Participants
TAM Service TA TV agents

All L-selected

TV agents’ viewership vector
Plain form 7 7 7 7

Encrypted form 7 3(1) 7 7

TAM result
Plain form 3(2) 7 7 7

Encrypted form 3(3) 3(4) 7 3(5)

Table 7.2: The scope (columns) of the data items (rows).

7.6 Experimental Results
To evaluate our solution, we developed a prototype that implements the Priv-

TAM calculation. The prototype can be separated into two main parts, the first
being the application on the Smart TVs and the second the application on the
TA. The Smart TV application is implemented using the Google TV platform1

and the Java for Android 3.1 SDK. Of course, it is possible and other platforms,
like Samsung Smart TV2, to support our cryptographic protocol because the only
requirement is to support operations with big integers. The application on the TA
is also implemented in Java. Both applications use the cryptographic primitives
of the Paillier Threshold Encryption Toolbox [199]. In this library, a centralized
mechanism (with a trusted dealer) for threshold key generation [49] is imple-
mented, instead of a distributed Paillier key generation [151]. In our view, this is
enough for this prototype implementation.

The TV agents use production-ready cryptographic libraries and employ 1024
bits RSA X.509 certificates. The communication between agents is performed
over secure sockets (SSL/TLS) with both client and server authentication. At
this stage, the full functionalities of the TV agents described in our proposed
system are not implemented, rather, we only implement the privacy-preserving
cryptographic TAM computation.

We performed an experiment of the PrivTAM calculation, where 6 TV agents,
the TA and the TAM Service participated and four channels exist. Each agent

1http://www.google.com/tv/
2http://www.samsung-smarttv.com
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generated random values for the submitted viewing record, as well as for the
gender and the age of the viewer. Initially, the TAM Service randomly chooses
two of the participating TV agents (L = 2), TV Agent2 and TV Agent5, for the
first phase of the protocol. Therefore, the final encrypted measurement will be
decrypted from TV Agent2, TV Agent5 and the TAM Service (n, t = 3 parties).

Next, each TV agent encrypts the viewership vector and transmits it to the TA
for verification. This process in our experiments takes less than 8 seconds. Once
the viewership vector is verified, the TA multiplies it with the current encrypted
TAM result. In Table 7.3 the values used to create the viewership vector of each
agent are shown, along with the resulting current encrypted measurement after
the submitted viewership vector is calculated by the TA.

TV Agents Values Current Encrypted TAM

Agent Channel Gender Age Channel1 Channel2 Channel3 Channel4

TV Agent1 Channel3 Male 23 0000 0000 0000 0000 1000 0000 0000 0000
TV Agent6 Channel1 Female 45 0000 0010 0000 0000 1000 0000 0000 0000
TV Agent2 Channel1 Male 32 0100 0010 0000 0000 1000 0000 0000 0000
TV Agent4 Channel4 Female 29 0100 0010 0000 0000 1000 0000 0000 0100
TV Agent3 Channel3 Female 53 0100 0010 0000 0000 1000 0010 0000 0100
TV Agent5 Channel3 Female 22 0100 0010 0000 0000 1000 1010 0000 0100

Table 7.3: Example of a PrivTAM.

At the end of the computation, the TA sends the encrypted results to TV A-
gent2, TV Agent5 and the TAM Service. The TAM Service collects the partial
decryption results from TV Agent2 and TV Agent5, and combines the partial de-
cryption results. The decrypted TAM result, is shown in the last row of Table 7.3,
where Channel3 has the highest audience (50%) and the 66.66% of viewers were
women. A snapshot of the application during the execution of the experiment is
shown in Figure 7.4.

7.7 Conclusions
The introduction of Internet connectivity and computation capabilities to

contemporary television systems, opens the possibility of conducting TAMs us-
ing larger samples of viewers. In this work we design an efficient protocol for
privacy-preserving TAMS and test the applicability of the proposed solution. The
accuracy and trustworthiness of the produced results act as strong incentives for
TAM Services to adopt the PrivTAM system. From the viewers’ perspective, Priv-
TAM offers the privacy assurance necessary for them to participate in a TAM
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Figure 7.4: A snapshot of the TV Agent5.

system, while fair compensation can be offered for their participation, return-
ing some of the economic benefits of TAMs back to the viewer. Additionally,
PrivTAM can support alternative kinds of measurements, providing interesting
information about audiences to the TV industry. These results are achieved with-
out using any specialized equipment and can take into account data from multiple
broadcast sources. Overall, we believe this is an interesting approach, which, us-
ing contemporary cryptographic tools, achieves reliable TAMs while protecting
the viewers’ privacy.

A future direction for improving our solution could be to investigate if it is
possible to create a decentralized architecture, like a peer-to-peer topology, where
the TV agents would be self-organized and they can independently calculate and
prove the correctness of the TAM results. In this case, a TA is not required.
Finally, an interesting extension of the PrivTAM would be to support polls where
the viewers could express their opinions about current social or political issues.
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Semantic Query Scrambling for
Search Privacy on the Internet

8.1 Introduction
The Internet has gradually become the primary source of information for

many people. More often than not, users submit queries to search engines in
order to locate content. Considering the Internet as a huge library, web-search
corresponds to a search within this library. While conventional library records are
private under law, at least in the U.S., Internet users might be exposed by their
searches.

Every time a user submits a query to a web search engine, some private
information about the user and his interests might be leaked with the query. The
query representing the interest will be saved in the engine’s session-logs, or it
may be intercepted by the Internet provider or any other node in the network
path. Table 8.1 presents some queries, which—depending on culture, country
laws, or corporation rules—may have privacy issues. Some of those queries may
correspond to malicious intentions, but we will not distinguish.

There is ongoing research on web-log anonymization, which has turned out to
be a non-trivial problem. The use of fairly advanced techniques like token-based
hashing [125] and query-log bundling [110] shows that web-log anonymization is
by far not solved. Another server-based approach for anonymizing query logs is
based on micro-aggregation [78]. The above approaches require the user to trust
the good intentions of the search engine (with respect to the user’s privacy) and
additionally to tolerate the inevitable possibility of personal data leakage of the
server-based methods. Thus, it currently makes sense to investigate the issue also
from the other side: how users can protect themselves.

In September 2006, AOL released a collection with search query-log data
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welfare fraud post traumatic stress
rehabs in harrisburg pa herpes

how to make bombs lawyers for victims of child rape
hazardous materials acute hepatitis

gun racks police scanner

Table 8.1: Queries which may have privacy issues.

containing about 21 million web queries collected from about 650 thousand users
over three months [158]. To protect user privacy, each real IP address had been
replaced with a random ID number. Soon after the release, the first ‘anonymous’
user had been identified from the log data. In particular, the user given the ID
4417749 in AOL’s query-log was identified as the 62-old Thelma [19]. Interestingly,
this identification was based solely on the queries attributed to her ID. Even
though AOL withdrew the data a few days after the privacy breach, copies of the
collection still circulate freely online. The incident only substantiated what was
already known: web search can pose serious threats on the privacy of Internet
users.

There are some countermeasures a common user can take to protect his pri-
vacy. One is to submit the query anonymously by employing standard tools, like
the Tor network1 or some anonymization proxy. This might seem as a step in
right direction, but it does not solve the privacy problem. In the AOL incident,
the origin of each query was hidden, since each IP address was replaced with a
random ID. However, all queries originating from the same IP were assigned the
same ID. This linkability between queries submitted by the same user, resolutely
increased the leakage of personal data from his query set and led to the expo-
sition of Thelma and possibly other users. Consequently, a further step would
be to make the queries of a user unlinkable. To accomplish this, a user has to
continuously change his IP address and to cancel out several other information
leak issues that may originate elsewhere, e.g. cookies and embedded javascript.

Alternatively or in parallel, a user can try to obfuscate his ‘profile’ by sub-
mitting some additional random queries. In this way, the real queries are hidden
in a larger set, and the task of identifying the actual interests of the user is
hindered to some extent. The TrackMeNot add-on [105] for the Firefox browser
implements such a feature. Another interesting add-on is OptimizeGoogle which,
among other features, trims information leaking data from the interaction of a
user with Google. An interesting combination of anonymization tools is employed
in the Private Web Search tool [175], which is also available as an (outdated2)

1http://www.torproject.org
2The Private Web Search (PWS) tool is a Firefox Add-on. It is available on-line but seems
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Firefox add-on. An interesting recent Firefox Add-on is Google Privacy, which
removes the redirected links from the web search results. While this does not
protect the user query, it helps to prevent the monitoring of which of the search
results the user will actually retrieve. A community-based approach to support
user privacy in information retrieval is presented in [56]; a user gets his query
submitted by other users of a peer-to-peer community.

An interesting approach for improving search privacy was presented in [57],
where a single-term query of a user is mixed with a set of k − 1 random search
terms. This approach achieves at most k-anonymity, which means that each key-
word can be assumed to be the actual keyword with probability of 1/k. In our
view, the concept of k-anonymity provides a handy tool to quantify privacy.
However, as it is applied in [57] it raises practical issues; the number of terms in
a search query is often bounded; for example, Google’s API allows a maximum
of 32 keywords. The problem further escalates for multi-term queries, where the
mixed query consists of k multi-term expressions. Another related work is the
plausibly deniable search technique of [147] where a query is transformed into a
canonical form and then submitted along with k− 1 appropriately selected cover
queries. A survey on issues and techniques for preserving privacy in web-search
personalization is given in [180].

There is an important reason why the above tools and methods alone might
be inadequate: in all cases, the query is revealed in its clear form. Thus, privacy-
enhancing approaches employing proxies, anonymous connections, or k-anonymity,
would not hide the existence of the interest at the search engine’s end or from any
sites in the network path. In addition, using anonymization tools or encryption,
the plausible deniability against the existence of a private search task at the user’s
end is weakened. Plausible deniability is a legal concept which refers to the lack of
evidence proving an allegation.1 If a query is never disclosed to the network (never
leaves the user’s device/computer), then the user can deny the information need
it represents. Such a denial may be deemed credible, believable, or else, plausible,
due to the lack of sufficient evidence of the contrary. One way to achieve plausible
deniability is to submit other related—but less exposing—queries instead, such
that each of the latter queries is pointing to many plausible information needs.
A related application of the notion of plausible deniability can be found in the
aforementioned work of [147].

Finally, there is also the related field of Private Information Retrieval (PIR).
In PIR, the main problem addressed is to retrieve data from a database without
revealing the query but only some encrypted or obfuscated form of it, e.g. see [228,

not to be further developed. Its latest version is v0.4.2, which supports Firefox up to version 2.
The PWS as well as the TrackMeNot tool have been developed in the context of the Portia
project (http://crypto.stanford.edu/portia/).

1http://en.wikipedia.org/wiki/Plausible_deniability
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152, 39]. An interesting approach for private information retrieval that combines
homomorphic encryption with the embellishment of user queries with decoy terms
is presented in [157]. Another work in this line of research is the secure anonymous
database search system presented in [168]. However, all the above PIR methods
have an important limitation: they assume collaborative engines.
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Figure 8.1: Architecture of a privacy-enhancing search system.

In view of the limitations of the aforementioned approaches, we define the
Query Scrambling Problem (QSP) for privacy-preserving web search as: Given a
query for a web search, it is requested to obtain related web documents. To achieve
this, it is allowed to interact with search engines, but without revealing the query;
the query and the actual interest of the user must be protected. The engines
cannot be assumed to be collaborative with respect to user privacy. Moreover,
the amount of information disclosed in the process about the query should be
kept as low as possible.

To address QSP, we propose the QueryScrambler [13, 12]; in a nutshell, it
works as follows. Given a query corresponding to the intended interest, we gener-
ate a set of scrambled queries corresponding loosely to the interest, thus blurring
the true intentions of the searcher. The set of scrambled queries is then submitted
to an engine in order to obtain a set of top-n result-lists which we call scram-
bled rankings. Given the scrambled rankings, we attempt to reconstruct, at the
searcher’s end, a ranking similar to the one that the query would have produced,
which we call target ranking. The process of reconstruction we call descrambling.
Figure 8.1 depicts the architecture of such a system.

The novelty of the QueryScrambler is that it does not reveal the important
terms of the exposing query, but it employs semantically related and less exposing
terms. The amount of privacy gained can be controlled by users via a parameter
which determines the minimum semantic distance between the intended query
and each of the scrambled queries issued. In this respect, the QueryScrambler
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only protects the query against query-logs or sites in the network path. Thus,
an adversary with knowledge of the method and access to all (or many) of the
scrambled queries of a particular scrambled search could potentially reverse the
procedure getting to the actual interest, nevertheless, this is easy to fix. In prac-
tice, the QueryScrambler can—and should—be combined with other orthogonal
methods, such as those mentioned earlier. Especially, adding random queries
and/or querying via multiple proxies/agents can make adversarial descrambling
nearly impossible.

Inevitably, the QueryScrambler introduces an overhead over traditional web-
search. We are currently not interested in its efficiency, as long as its requirements
are within the reaches of current commodity desktop systems and retail Internet
speeds. What we are interested in is its feasibility, focusing on the trade-off be-
tween privacy and quality of retrieved results: the method may be lossy, in the
sense that the quality of results may degrade with enhanced privacy.

8.2 A Query Scrambler
The proposed QueryScrambler is based on a semantic framework (Section 8.2.2).

First we discuss feasibility issues.

8.2.1 Theoretical & Practical Feasibility
There is no question of the theoretical feasibility of a near lossless QueryScram-

bler. Suppose we submit to the engine scrambled queries consisting of very fre-
quent words, e.g. near stop-words. A few such scrambled queries could cover
almost all the collection, which then could be downloaded to the user’s site, in-
dexed, and searched with the query. Accounting for the difference between the
retrieval models, that of the engine’s (usually proprietary) and that of the user’s,
a near-target or satisfactory ranking could be produced locally without revealing
the user’s target interest. In reality, such a procedure would be highly impractical
or impossible for large web search engines.

Having established the theoretical feasibility of near lossless solution to QSP
with the procedure described above, what we are interested in is the trade-off
between the descrambled ranking quality and the following three quantities:

1. scrambling intensity, i.e., the minimum semantic distance between the query
and the set of scrambled queries,

2. query volume, in terms of the cardinality of the scrambled query set, and

3. ranking depth, i.e., the number of results returned by the engine for a scram-
bled query.
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The scrambling intensity represents the degree of hiding the true intentions;
it should be given the highest priority and be kept high, affecting negatively the
ranking quality. Query volume and ranking depth have the largest impact on the
practical feasibility of the task; they should be kept low, affecting again negatively
the ranking quality.

In practice, web search engines usually do not return the full set of results,
but truncate at some rank n. For example, the Google API returns a maximum
of top-1000 results per query. In this respect, we could eliminate the depth from
the parameters by setting it to top-1000, a rather sufficient and practical value.

8.2.2 A Semantic Framework
Simplifying the analysis, let us assume that a query represents a single concept.

Concepts more general to the query, i.e., hyper-concepts, would completely cover
the query’s concept, as well as other concepts. In this respect, some other query
representing one of the hyper-concepts of the query would target more results than
the query but include all results targeted by the query. Privacy for the query can
be enhanced by searching for any of the hyper-concepts instead and then filtering
the results for the query concept. Thus, queries representing hyper-concepts of
the query can be used as scrambled queries (SQ).

 
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Figure 8.2: Results for two scrambled queries in relation to a query Q: (A) all
results in a concept space of uniform density, (B) top-n results in a uniform
document space, (C) top-n results in a non-uniform document space. Q represents
all relevant results.

Figure 8.2A depicts an idealized concept space. As an example consider a
query Q representing the concept ‘herpes’ (the disease), but searching for the
concept of ‘infectious disease’. SQ1 could represent ‘infectious disease’. SQ2 could
represent ‘health problem’, a more general concept than this of SQ1 denoted by
covering a larger area in the space. We assume that the space has a uniform
concept density. Both SQ1 and SQ2 cover Q completely.
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Trying to transform Figure 8.2A to a document space, some important issues
come at play:

1. Concept retrieval via the bag-of-words paradigm is inherently noisy. Se-
mantic relations between keywords or phrases are seldom used. Thus, using
concept names as keywords, e.g. using ‘infectious disease’ directly as SQ1,
would count on 100% co-occurrence of this phrase on all documents con-
taining the word ‘herpes’ in order to fulfil Figure 8.2A.

2. Web search engines usually do not return the full set of results but truncate
at some rank n.

3. Document spaces are non-uniform, a direct result of the collection at hand
not covering all concepts equally.

Let us first consider an idealized uniform document space. The first issue
would result to SQ1 and SQ2 circles not covering Q completely, with their centers
positioned at slightly different areas (assuming keyword retrieval approximates
well concept retrieval). The second issue would enforce equal circle areas for SQ1
and SQ2, denoting n results (assuming that both scrambled queries have ≥ n
results). These are depicted in Figure 8.2B.

Factoring in non-uniformity of the document space, i.e., the third issue, the
picture changes to Figure 8.2C; the SQ2 area is denser than the area of SQ1,
denoted by the reduced area covered by n results. The size of the Q area may also
change, depending on the number of relevant results in the collection. Obviously,
a single SQ would not cover all results corresponding to the query, so for a full
coverage multiple SQs would have to be used.

Next, we investigate theoretically the trade-off between the number of SQs
used and the expected coverage. Then, we describe the current implementation
of the QueryScrambler.

8.2.3 Scrambled Query Volume
One important parameter of the QueryScrambler is the number of scrambled

queries that should be executed. Naturally, a larger number of scrambled queries
will increase the recall. We provide a simple probabilistic argument for how the
number of scrambled queries trades off with recall.

Assume that we are interested in ℓ ≤ n target items, where n is the search
engine’s truncation rank. Also, assume that we manage to generate a set of scram-
bled queries, such that each scrambled query catches r of the target items. If for
example r = 5, ℓ = 50 and n = 1000, then each scrambled query will retrieve (on
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average) r = 5 target items in 1000 retrieved items. The precision of the scram-
bled ranking will only be 0.5%, a value which should be considered sufficiently
low for protecting the user’s privacy.

How many scrambled queries should we submit in order to catch, with a high
probability, all target items? If we assume that the target items in the results
of each scrambled query are independent random items of the set of ℓ target
items (of course, in reality the items will not be independent, but we will make
this simplifying assumption here to obtain an indication about the number of
scrambled queries that are needed), then this problem can be modelled as a balls
and bins problem; each target item corresponds to a bin and we throw balls
randomly into the bins until all bins have at least one ball. In particular, this
specific problem corresponds to the coupon collector’s problem in which there are
n types of coupons and independent random coupons are chosen until a coupon
of each type has been found. The following result which gives the average number
of coupons that have to be drawn in order to find all ℓ coupons is well-known;
see for example [143, 142]. For completeness, we provide a short proof of it in the
context of QSP.

Lemma 1 The average number of random target items that have to be drawn in
order to find all ℓ target items is ℓHℓ, where Hℓ is the harmonic number. The
harmonic number satisfies ln ℓ ≤ Hℓ ≤ ln ℓ+1, which implies that Hℓ = ln ℓ+Θ(1).

Proof 1 For 0 ≤ i ≤ ℓ− 1, assume that i distinct target items have been found.
Let Xi be the number of random target items that have to be drawn until the next
distinct target item is found. Then, the sum Yℓ =

∑ℓ−1
i=0 Xi is a random variable

that corresponds to the total number of random target items that are drawn until
all ℓ distinct target items are found. Each random variable Xi is geometrically
distributed with parameter pi = ℓ−i

ℓ
. Thus, the expected value of Xi is E[Xi] = 1/pi

and the expected value of the sum Yℓ is

E[Yℓ] = E[X1 + · · ·+Xℓ] = E[X1] + · · ·+ E[Xℓ] = ℓ
ℓ∑

i=1

1

i
= ℓHℓ . (8.1)

For the harmonic number Hℓ, it holds

Hℓ =
ℓ∑

i=1

1

i
≤

⌊log ℓ⌋∑
i=0

2i−1∑
j=0

1

2i + j
≤

⌊log ℓ⌋∑
i=0

2i−1∑
j=0

1

2i
≤

⌊log ℓ⌋∑
i=0

1 ≤ log ℓ+ 1 . (8.2)

We now apply the above arguments to the QueryScrambler. Let Yℓ be the
number of random target items that have to be retrieved to obtain the ℓ target
items. As noted earlier, Yℓ is a random variable and Figure 8.3 shows how its
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expected value E[Yℓ] is related to ℓ. For ℓ = 50, the expected number of random
items that have to be drawn to retrieve all target items is s = 50H50 ≃ 225. If
every scrambled ranking includes r = 5 target items, then this implies that on
average v = 45 scrambled queries have to be executed. This number is reduced
to v = 15, if the scrambled queries return on average r = 15 target items.
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Figure 8.3: The expected number E[Yℓ], where Yℓ is the number of random items
that have to be retrieved until all ℓ target items have been found.

To account for deviations, we may set a more conservative goal where we focus
on obtaining not necessarily all distinct target items but only a (large) fraction
of them. Let Z be the number of distinct random items after m random target
items have been retrieved and let µ be its expected value µ = E[Z]. Then, it is
not hard to show the following Lemma.

Lemma 2 The average number µ of distinct random items after drawing m
random target items is

µ = E[Z] = ℓ(1− (1− 1/ℓ)m) . (8.3)

Proof 2 For each distinct target item i, let Zi be an indicator random variable
such that

Zi =

{
0, if item i has not been selected after m random items,
1, if item i has been selected after m random items. (8.4)

Then
E[Zi] = Pr[Zi = 1] = 1− Pr[Zi = 0] = 1− (1− 1/ℓ)m . (8.5)

For Z = Z1+ · · ·+Zℓ the average number of distinct target items after m random
items is E[Z] = E[Z1 + · · ·+ Zℓ] = ℓ(1− (1− 1/ℓ)m) .
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In Figure 8.4, the upper line shows for ℓ = 50 how the expected number of
target items found increases with the number of random items retrieved. Again,
dividing the number of random items by r = 5 gives the average number of
scrambled queries.

50 100 150 200 250
m

10

20

30

40

50
E@ZD

Figure 8.4: The random variable Z is the number of distinct target items (out
of a total of ℓ = 50 distinct target items) that have been found after m random
target items have been retrieved. For ℓ = 50, the upper line shows the expected
value of E[Z] with respect to m. The lower line shows a lower (tail) bound on Z
(with probability at least 0.9) with respect to m; with probability at least 0.9 the
value of Z is not below the lower line.

The lower line in Figure 8.4 presents a lower (tail) bound on the number of
target items found. More precisely, the line shows that with probability at least
0.9, at least so many items have been found. The corresponding tail inequality is
obtained from [143, Theorem 4.18] by focusing on the number Z of occupied bins
instead of the number of empty bins. Then, as in the original theorem of [143],
a corresponding martingale sequence1 is defined and then Azuma’s inequality is
applied. The outcome is that for λ > 0,

Pr[|Z − µ| ≥ λ] ≤ 2 exp
(
−λ2(ℓ− 1/2)

ℓ2 − µ2

)
, (8.6)

where Z is the number of distinct target items found after m random target items
and µ = E[Z]. Setting the right hand side in the above equation to be ≤ ρ = 0.1

and solving for λ gives that λ ≥
√

(ℓ2−µ2) ln(2/ρ)
ℓ−1/2

. The minimum possible value of
λ given by the above inequality is used to draw the lower line in Figure 8.4.

1A simple definition of a martingale sequence from [143]: A sequence of random variables
X0, X1, . . . , is said to be a martingale sequence if for all i > 0, E[Xi|X0, . . . , Xi−1] = Xi−1.
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8.2.4 Current Implementation
In order to generate scrambled queries representing hyper concepts of the

query, we currently employ an ontology for natural language terms. The approach
taken is a brute force one which does not involve deep semantic analysis of the
query.

First, we perform a massive indiscriminate generalization taking all possi-
ble combinations of generalized query terms up to a certain higher conceptual
level. Then, we apply a similarity measure to determine the distance between
the query and scrambled queries; the further the distance, the better the privacy
enhancement. In this respect, the similarity measure is ‘loaded’ with the task of
classifying the scrambled queries into privacy levels, getting rid at the same time
of generalized queries unsuitable to the task.

8.2.4.1 Query Generalization

As an ontology, we employ WordNet, version 3.0 (2006), a freely available lexi-
cal database used extensively for supporting automatic text analysis and artificial
intelligence applications [140]. WordNet attempts to model the lexical knowledge
of a native speaker of English. Its database contains about 150000 words or col-
locations1, organized in over 115000 synonym sets (synsets) across four types of
part of speech (PoS): noun, verb, adjective, and adverb.

A synset is the smallest unit, which represents a specific meaning of a word
or collocation. Synsets are connected to each other through explicit semantic rela-
tions. The hypernymy/hyponymy relations for nouns and the hypernymy/tropony-
my for verbs constitute an ‘is-a-(kind-of)’ hierarchy. The holonymy/meronymy
relations for nouns constitute ‘is-a-part/member/substance-of’ hierarchies. Such
taxonomic properties for adverbs and adjectives do not exist in the ontology. The
synsets are also organized into senses.

Initially, WordNet’s lemmatization process is applied to each keyword of the
query, followed by stopword removal using the traditional SMART system’s En-
glish stoplist. Then, possible collocations are recognized by checking consequent
query words against WordNet. All resulting terms (i.e., single keywords or collo-
cations) go through part-of-speech (PoS) and sense disambiguation.

PoS and sense disambiguation cannot be performed well without enough con-
textual information, e.g. a complete sentence. Thus, we used a manual approach
which gives the user more control over the whole procedure; the extra user effort
is deemed insignificant in the big picture of privacy enhancement, considering
also the fact that web queries consist of only 2 to 3 terms on average. The system

1A collocation is two or more words that often go together to form a specific meaning, e.g.,
‘hot dog’.
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finds all possible PoS for each term using Wordnet and prompts the user to select
the proper one. Similarly, the user selects the proper sense.

Hyper-concepts for query’s terms are approximated via hypernyms and holonyms
for nouns, and hypernyms for verbs. For each query term, a bag of related terms
is generated following the hypernymy and holonymy relations in the ontology up
to a minimum level of 2 or up to 3 if level 2 results to less than 300 scrambled
queries. The set of scrambled queries is the Cartesian product of those bags of
words. Thus, accounting for collocations, scrambled queries have length equal to
the query.

We do not generalize adverbs or adjectives since WordNet does not have sim-
ilar relations, but keep them in scrambled queries. This does not seem to be a
problem; adverbs and adjectives are unlikely to have privacy issues, since they
are usually modifiers to verbs and nouns, respectively.

8.2.4.2 Measuring Privacy Enhancement

Several methods for determining semantic similarity between terms have been
proposed in the literature. We apply the approach of [222] to estimate the seman-
tic similarity between two terms. The method has been found to be among the
best edge counting methods applied on WordNet [200], and it has been used
widely in the literature, e.g. [190, 225]. It measures the depth of the two concepts
in the WordNet taxonomy as well as the depth of the least common subsumer
(LCS)1, and combines these figures into a similarity score

simi,j =
2 depth(LCS)

depth(i) + depth(j) (8.7)

where, for the task at hand, we will denote a query term with i and a scrambled
query term with j.

The similarity between pairs of terms is used to calculate the similarity be-
tween each scrambled query and the query. Let SQ be a scrambled query. If q
is the length of the query, then any SQ has also length q. Thus, there are q2

term(SQ)-to-term(query) similarities. For each scrambled query term j, what de-
termines the privacy level is its max similarity with any of the query terms, i.e.,
maxi simi,j; the larger the max, the lesser the privacy. Similarly, for a multi-term
query what determines the privacy level is the least private term, justifying again
the use of max. Thus, the similarity simSQ between the scrambled query and the
query is

simSQ = max
j

max
i

simi,j (8.8)

1The LCS is defined as the ancestor node common to both input synsets whose shortest
path to the root node is the longest.
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where maxj selects the most exposing scrambled query term with respect to the
query terms.

The last measure is a very strict criterion for privacy. In the current imple-
mentation, considering that adverbs and adjectives appear in scrambled queries
unchanged, the measure would return 1 denoting no privacy. In this respect, we
relax the criterion by taking the average instead:

simSQ =
1

q

∑
j

max
i

simi,j (8.9)

On the one hand, this implies that adverbs and adjectives reduce privacy, but not
destroying it altogether. This reduction makes the measure safer from a privacy
perspective. On the other hand, a too general term would not contribute too much
to increasing the privacy of a multi-term scrambled query: too general terms are
filtered out by limiting the paths on the ontology to 2 or 3 edges, as described in
Section 8.2.4.1.

Table 8.2 shows all scrambled queries generated with the current query gen-
eralization method for the query ‘gun racks’, together with their similarities to
the query as these are calculated by Equation 8.9.

8.2.5 Descrambling Ranked-lists
Each scrambled query run on a search engine produces a scrambled ranking.

We investigate two ways of reconstructing the target ranking from many scram-
bled rankings.

8.2.5.1 Fusion

A natural and efficient approach to reconstructing the target ranking would
be to fuse the scrambled rankings. However, standard fusion methods from meta-
search, such as CompSUM, Borda Count, etc., may not be suitable: the scrambled
rankings are results of queries targeting different, more general than the query,
information needs.

Figure 8.2C depicts a document space, with the areas targeted by a query
and two scrambled queries. The further from a query’s center, the deeper in the
ranking. The results we are interested in appear deeper in scrambled rankings
than their top ranks. To complicate things further, web search engines usually do
not return scores. Thus, a fusion approach should be based solely on ranks and
have a positive bias at deep or possibly middle ranks of scrambled rankings.

A simple method that may indirectly achieve the desired result is to fuse
by the number of scrambled rankings an item appears in. Assuming that sets
of top results of scrambled rankings, as well as sets of noisy results, would be
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simSQ SQ
0.9442725 weapon system support
0.9442725 weapon support
0.9442725 arm support
0.9150327 instrument support
0.9111842 weapon system device
0.9111842 weapon device
0.9111842 arm device
0.8952206 device support
0.8819444 instrument device
0.8736842 weapon system instrumentation
0.8736842 weapon system instrumentality
0.8736842 weapon instrumentation
0.8736842 weapon instrumentality
0.8736842 arm instrumentation
0.8736842 arm instrumentality
0.8621324 device device
0.8503268 instrument instrumentation
0.8503268 instrument instrumentality
0.8433824 device instrumentation
0.8433824 device instrumentality

Table 8.2: All scrambled queries for the query ‘gun racks’.

more disjoint than sets of deep to middle results, such a fusion method would
over-weigh and rank at the top the common good results. We will call this fusion
by occurrence count (FOC) descrambling. The method results to a rough fused
ranking since it classifies items into v ranks, where v is the number of scrambled
queries or rankings.

In order to determine whether Figure 8.2 corresponds well to the reality of the
proposed scrambler, we will also fuse with Borda Count (BC). BC is a consensus-
based electoral system which in its simplest form assigns votes to ranks as N −
rank + 1, where N is the total number of items. Since N is unknown for web
search engines, we set it to 1000, i.e., the depth of the scrambled lists. Then,
votes per item are added for all rankings, and items are sorted in a decreasing
number of total votes. Note that BC results in a smoother ranking than FOC.

8.2.5.2 Local Re-indexing

Another approach to re-constructing a target ranking, which does not suffer
from low correspondence of ranks to relevance and produces smoother rankings
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than FOC or BC, would be to recover item scores. This can be achieved by
re-indexing the union of scrambled results at the user’s end, and running the
query against a local engine. We will call this method local re-indexing (LR)
descrambling.

Re-indexing such non-random subsets of a web collection would locally create
different frequency statistics than these at the remote end. This may result in a
ranking quality inferior to the target ranking, even if all target results are found by
the scrambled queries and re-indexed. Furthermore, it is inefficient compared to
the fusion approaches: retrieving and indexing the union of results may introduce
a significant network load, increased disk usage, and CPU load.

8.3 Evaluation
In order to evaluate the effectiveness of the QueryScrambler and how its qual-

ity trades off with scrambling intensity and scrambled query volume, we set up
an offline experiment. We are currently not interested in the efficiency of the
approach, as long as the time and space needed is within the reaches of current
commodity desktop systems and retail Internet speeds.

First, we describe the datasets, the software and parameters, and the effec-
tiveness measures used. Then, we present the experimental results.

8.3.1 Datasets, Tools, & Methods
The query dataset consisted of 95 queries selected independently by four hu-

man subjects from various query-logs. The selection was based on the rather
subjective criterion of: queries which may have required some degree of privacy.
Table 8.1 presents a sample of the test queries; the full set of the test queries is
available online.1

The ClueWeb09 dataset consists of about 1 billion web pages, in 10 languages,
crawled in January and February, 2009.2 It was created by the Language Tech-
nologies Institute at CMU. As a document collection, we used the ClueWeb09_B
dataset consisting of the first 50 million English pages of the ClueWeb09 dataset.
The dataset was indexed with the Lemur Toolkit V4.11 and Indri V2.11, using
the default settings of these versions, except that we enabled the Krovetz stem-
mer.3 We used the baseline language model for retrieval, also with the default
smoothing rules and parameters. This index and retrieval model simulate the
remote web search engine.

1http://lethe.nonrelevant.net/datasets/95-seed-queries-v1.0.txt
2http://boston.lti.cs.cmu.edu/Data/clueweb09/
3http://www.lemurproject.org
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A local engine re-indexes, per query, the union of sets of results returned by the
remote engine for all scrambled queries. For the local engine, we again used the
Lemur Toolkit and Indri, but in order to simulate that a remote engine’s model
is usually proprietary, we switched the local retrieval model to tf.idf. The items
for re-indexing were extracted as term vectors directly from the remote engine’s
index; this implies a common pre-processing (e.g. tokenization, stemming, etc.)
across the remote and local engines.

8.3.2 Effectiveness Measures
There are several ways for measuring the top-n quality of an IR system, e.g.

precision and recall at various values of n, mean average precision (MAP), etc.
These compare two top-n lists by comparing them both to the ground truth, but
this presents two limitations in the current setup. First, such measures typically
give absolute ratings of top-n lists, rather than a relative measure of distance.
Second, in the context of the web, there is often no clear notion of what ground
truth is, so they are harder to use.

We are interested in the quality of the re-constructed ranking in terms of how
well it approximates the target ranking, not in the degree of relevance of the
re-constructed result-list. Although, this could still be measured indirectly as a
percentage loss of a traditional IR measure (assuming ground-truth exists), e.g.
MAP, we find more suitable to opt for direct measures of result set intersection
and rank distance. In this way we will still measure the effectiveness even for
queries poorly formulated for the information need, or information needs with
near zero relevance in a collection.

A simple approach to measure the distance between two top-n lists τ1,τ2, is to
regard them as sets and capture the extent of overlap between them. We measure
the overlap with the following disjointness metric (DM), which is based on the
symmetric difference of the two lists:

DM(τ1, τ2) =
|(τ1 − τ2) ∪ (τ2 − τ1)|

|τ1|+ |τ2|
. (8.10)

It lies in [0, 1], with 1 denoting disjoint lists. For lists of the same size, DM equals
1 minus the fraction of overlap.

Traditional measures of rank distance (i.e., distance between two permuta-
tions), such as Kendall’s tau distance [120] or Spearman’s rho, are not very suit-
able because our lists are truncated so they may rank different results. Thus,
we use Kendall’s distance with penalty parameter p, denoted K(p), which is a
generalization of Kendall’s tau distance to the case of truncated lists. K(p) was
introduced in [82], where it was shown that it is not a metric in the strict mathe-
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matical sense, but still a near metric in the sense of satisfying a ‘relaxed’ triangle
inequality. On the other hand, DM is a metric.

The original Kendall distance between two permutations is essentially equal
to the number of exchanges in a bubblesort to convert one permutation to the
other. The generalized K̄

(p)
i,j (τ1, τ2) measure is also related to the permutation

distance between the two truncated lists, albeit with some plausible assumptions
about items that do not belong to both lists. The detailed description of K(p)

is out of the scope of this work and the interested reader is referred to [82]. In
short, we first define a penalty K̄

(p)
i,j (τ1, τ2) for each pair of items in P (τ1, τ2),

where P (τ1, τ2) is the union of the sets of items of the two lists. Then,

K(p)(τ1, τ2) =

{i,j}∈P (τ1,τ2)∑
K̄

(p)
i,j (τ1, τ2) . (8.11)

From the definition of K(p)(τ1, τ2) and assuming that the penalty parameter is
p ∈ [0, 1], the maximum distance between two top-k lists occurs when the lists are
disjoint. In this case the value of the distance measure is k((p+ 1)k+ 2− p). We
use the above maximum value of the K(p) measure to normalize it; the normalized
distance takes values in the interval [0, 1]. We report results with p = 0.5; this
corresponds to the ‘neutral’ approach, and moreover, K(0.5) is equivalent to other
rank distance measures (Kavg, KHausdorff), as it is shown in [82].

A very important feature of the Kendall’s distance with penalty parameter p
is that it is a measure that can be applied even if the lists are obtained from a
very large universe whose exact size might be unknown, thus it is suitable in the
web retrieval context.

We evaluate with the averages of both measures on the test query dataset at
top-ℓ for ℓ = 50 instead of n = 1000. We find top-50 to be more realistic for
web retrieval than the top-1000 of traditional IR evaluations. In addition, this
allows us to put our results somewhat in perspective with the K(0) results for
top-50 reported in [82] where rankings returned from different web search engines
for the same query are compared to each other. In initial experiments, we found
that K(0) and K(0.5) give values not too far away from each other. The authors in
the last-mentioned study regard values of around 0.3 as ‘very similar’ rankings,
while comparing a ranking fused from several engines to the individual rankings
generated K(0) distances between 0.3 and 0.8.

8.3.3 Experiments & Results
We run experiments for 3 levels of scrambling intensity and 3 levels of query

volume. By looking into the sets of scrambled queries generated via the method
described in Section 8.2.4, it seemed that a test query to scrambled query simi-
larity of less than 0.70 results in extremely weak semantic relationship between
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the two. Consequently, we took the similarity intervals of (1, 0.7], (0.9, 0.7], and
(0.8, 0.7], for low, medium, and high scrambling respectively. For scrambled query
volume, we arbitrarily selected volumes in {1, 10}, {11, 25}, and {26, 50}, for low,
medium, and high volume respectively.

When a combination of intensity and volume levels had 0 scrambled queries
for a test query, we did not take that test query into account in averaging results.
In such cases, search privacy for the query at the requested scrambling intensity
and volume is not possible with the proposed method and other methods must be
applied. Table 8.3 presents the number of test queries averaged per combination.
In the parentheses, we further give the minimum, median, and maximum numbers
(in this order) of scrambled queries that the test queries had for the combination
at hand. The combinations with the fewest test queries are the ones where a high
volume was requested, especially at high scrambling; the proposed method can
generate a limited number of scrambled queries. This can be a limitation of all
ontology-based methods which statistical methods may not have.

scrambling
low med high

vo
lu

m
e high 55 (27,50,50) 33 (29,50,50) 19 (26,50,50)

med 72 (11,25,25) 62 (13,25,25) 30 (11,25,25)
low 94 (3,10,10) 88 (1,10,10) 58 (1,10,10)

Table 8.3: Numbers of test queries and (min, median, max) numbers of scrambled
queries per scrambling-volume combination.

Tables 8.4 and 8.5 present the mean K(0.5) and DM (Section 8.3.2) for FOC
and BC descrambling (Section 8.2.5.1) respectively. The best results are expected
at the top-left corners of the tables for both measures, i.e., high-volume/low-
scrambling, and are expected to decline with decreasing volume and/or increasing
scrambling. The best experimental results are in boldface. In all experiments, the
two measures appear correlated, in the sense that a better DM also implies a
better ranking or K(0.5).

mean K(0.5) mean DM
scrambling scrambling

low med high low med high

vo
lu

m
e high .980 .989 .998 .985 .992 .999

med .961 .978 .998 .968 .983 .999
low .962 .969 .993 .971 .977 .996

Table 8.4: Mean K(0.5) and DM for FOC descrambling.
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mean K(0.5) mean DM
scrambling scrambling

low med high low med high

vo
lu

m
e high .970 .981 .994 .978 .987 .996

med .944 .971 .994 .956 .978 .996
low .927 .958 .983 .944 .969 .988

Table 8.5: Mean K(0.5) and DM for BC descrambling.

The best DM results correspond to an average intersection of only 2 or 3
results between fused and target top-50 rankings, for both fusion methods. In
any case or measure, BC works better than FOC. This seems to be a result of
the rougher ranking that FOC provides, since the results of the two methods
become closer as volume increases. Results degrade with increasing scrambling,
as expected, but also degrade with increasing volume. The later is due to the fact
that larger volumes of scrambled queries presuppose larger degrees of scrambling
even within the same scrambling interval.

Table 8.6 presents results for LR descrambling (Section 8.2.5.2); they are much
better than the fusion descrambling results. The unexpected degradation with
increasing volume appears again, but only at low or med scrambling. However,
it is now more difficult to explain, and we can only speculate that it is a result
of having biased global statistics in the local collection. Here, the best DM result
corresponds to an average intersection of 7 to 8 results between descrambled and
target top-50 rankings.

mean K(0.5) mean DM
scrambling scrambling

low med high low med high

vo
lu

m
e high .848 .898 .864 .891 .926 .906

med .832 .883 .901 .876 .915 .932
low .812 .870 .914 .856 .903 .940

Table 8.6: Mean K(0.5) and DM for LR descrambling.

8.4 Retrieval Failure Analysis and Improvements
The task we set out to perform is daunting. Nevertheless, on average, we get

to the same 7 or 8 results of the top-50 of the plain query, without submitting its
important keywords; we consider this a decent result. In this section, however, we
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examine further the results in order to identify what may have a negative impact
on retrieval effectiveness and suggest future improvements.

Firstly, it is easy to see that we have a problem in fusing scrambled ranked lists,
since the Local Re-indexing and re-ranking approach (LR descrambling) yields the
triple effectiveness of the two fusion methods we have tried. Nevertheless, we do
not believe that LR descrambling represents the ceiling of achievable performance.
In order to measure the quality of scrambled queries without the influence of
descrambling, (i.e., neither fusion nor local re-indexing is used), we can look at
the number of the target top-50 results found by all scrambled queries combined.
Table 8.7 presents these numbers, averaged over all test queries. The previously
best result of 7 or 8 is now raised to almost 13. We see improvements of at least
40% and up to 100% all over the table. In other words, although the scrambled
queries retrieve quite a few of the target top-50 results, local re-indexing can rank
roughly half or two-thirds of those in the descrambled top-50. This is clearly due
to having biased term frequency statistics in the local collection, and results could
be improved by using a generic source of frequencies instead.

scrambling
low med high

vo
lu

m
e high 11.1 9.7 7.5

med 12.1 7.8 5.1
low 12.7 8.0 4.3

Table 8.7: Mean number of the target top-50 results found by all scrambled queries
combined.

Secondly, there seems to be amble room for improving the method of gen-
erating scrambled queries. Let us consider a user who wants maximum privacy
(i.e., high scrambling) irrespective of cost (i.e., he is willing to trade off time and
use a high query volume). Assuming ideal descrambling (i.e. yielding the results
of Table 8.7), the ceiling of performance would be 7.5 items out of 50, or a 15%
intersection between targeted and obtained results in the top-50. The ‘missing’
85% represents the price that such a user needs to pay for privacy, under the
currently proposed method for generating scrambled queries. Milder privacy re-
quirements (i.e., low scrambling) can raise the intersection to 22–25% (or lower
the missing items to 75–78%). In any case, many target items are missed, thus
we examined the recall of the scrambled queries with respect to the overall recall
that they achieve for the original user query. To this end, we used the results of
Section 8.2.3 to predict the overall recall from the recall of the scrambled queries
and compared this number with the experimental values. Indicative results are
presented in Figure 8.5.

163



8.4 Retrieval Failure Analysis and Improvements

 0

 10

 20

 30

 40

 50

 1  10  100  1000

D
is

ti
n

ct
 T

ar
g

et
 I

te
m

s

Total Number of Retrieved Target Items

Figure 8.5: The total number of distinct target items with respect to the total
number of random target items for each query-experiment. The dashed line shows
the expected number of distinct target items, if the target items are independently
randomly selected. The continuous line presents the experimental results. The line
simply connects a large number of points, where each point corresponds to a single
experiment.

In general, the measured overall recall is lower then its predicted value. The
distance becomes larger for larger volumes of random target items (which in most
cases implies a larger number of scrambled queries or scrambled queries of lower
scrambling degree). A plausible explanation for the divergence of the measured
recall is that the target items captured by the scrambled queries are correlated
and not independent samples of the set of target items as it should be in the
ideal case. This in turn provides a strong indication that the scrambled queries
do not catch independent random subsets of the set of target items. Instead many
scrambled queries return practically the same target items in their results.

The above observation defines an important issue related to the retrieval pro-
cedure with scrambled queries. The challenge is how to select scrambled queries
such that they cover more effectively the whole range of target items of the orig-
inal query. The Wordnet-based approach used in this work is a first step in this
direction but the results show that it can be improved. Specifically, the problem
seems to be that the nearness of two terms in Wordnet’s graph does not imply
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a high co-occurrence of them in documents. In this context, we are considering
to enhance our scrambled query generation procedure with statistical methods,
e.g. incorporate term co-occurrence statistics. Wordnet also presents a couple of
other limitations in this context: there is no obvious way to deal with phrases
(except collocations), and it is a rather generic, domain-independent, thesaurus.
Domain-specific knowledge could be beneficial.

Thirdly, using a search engine based on semantics might improve results. The
approach taken is based on the premise that a generalization of a concept X
appears in some documents that treat X. However, most of the currently big
and popular commercial search engines—as well as the research engine we used
in the experiments—use very little of the semantic structure behind the con-
cepts for ranking items. Consequently, we are falling back to simply targeting
co-occurrence between user and scrambled terms, missing relevant results. To
this end, we submitted a dozen of our test queries to the standard non-semantic
engine of Google as well as two semantic engines: Cognition1 and Hakia2. In-
stead of the user query “acute hepatitis” (which returned 10 good results in all
three engines), we submitted the scrambled query “acute liver disease”. By visu-
ally examining the snippets of the top-10 results, Google returned 0 results on
hepatitis, while Medline.Cognition returned 4, and Hakia (which groups results
in categories) returned 1 in Credible, 3 in Pubmed, 0 in News, and 7 in Blogs.
This example suggests that using semantic engines (as well as domain-knowledge)
would improve results. Nevertheless, we had a difficult time finding another so
good example, thus it is unclear how big the benefits may currently be. Although
there are risks in exchanging a popular big and proven non-semantic search engine
with an unproven semantic engine of possibly less coverage, this matter certainly
deserves a further investigation in the current context.

Lastly, our results may be more promising when measured in absolute re-
trieval effectiveness than goodness of approximating the target ranking. We set
our ultimate goal to reconstructing the target ranking, i.e., the one the original
query would have returned. However, by submitting multiple scrambled queries,
we may retrieve new relevant documents not appearing in a target top-50 rank-
ing. However, we cannot measure this in our current testbed, since it consists
of custom queries with privacy issues for which no relevance judgements exist.
This may even be ‘tricky’ in other standard testbeds: Given that it is customary
to approximate ground-truths through pooling processes (i.e., humans judging
only the union of top results of many different systems assuming all the rest
non-relevant), and that most systems participating in a pool are based on the
bag-of-words paradigm, the ground-truth provided with standard Web test col-

1http://www.congition.com
2http://www.hakia.com
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lections may not be sufficient for our purpose. Again, further experimentation
with semantic engines seems important.

8.5 Privacy Analysis
In the previous section we identified parts of our approach which may have

a negative impact on retrieval effectiveness. Here, after a brief discussion on IR
privacy, we investigate whether our approach achieves its the privacy goals.

8.5.1 Discussion on IR Privacy
An interesting concept that fits into the context of privacy enhanced web

search is plausible deniability, a legal concept which refers to the lack of evidence
proving an allegation. The scrambler may enhance the plausible deniability, since
the original query is never disclosed and the real interest of the user is hidden
within a broader concept space. This is the main privacy-enhancing feature of the
QueryScrambler. Instead of the user query, a set of scrambled queries representing
more general concepts is used.

Also of great importance is the fact that the QueryScrambler can perform
searches while protecting not only the privacy of the user but also the query itself.
A query may pose serious privacy threats even if it is submitted anonymously. In
competitive fields like business or academic research, a query may contain some
interesting new idea which should not be disclosed at least while the user is still
making background searches on it.

In addition to the original query, the privacy of a web search might also be
endangered by the results of the query. If the results have very high precision,
then important information about the original user interest might be inferred
from them. Regarding this issue, an inherent privacy-enhancing principle of the
QueryScrambler is that each scrambled query usually retrieves only a small num-
ber of items that are in the real interest of the user. The results of an ideal
scrambled query should contain some of the target items but only mixed with
a large volume of unrelated or loosely related items and preferably not in the
first ranks. More specifically, each scrambled query should have small recall and
small precision with respect to the ℓ most related target items. In this way, the
privacy of the user is not seriously endangered by simply monitoring the results.
A decisive parameter of the QueryScrambler that can be used to achieve this is
the degree of scrambling. If the scrambling degree is too high, then the recall in
the scrambled results will be too low; privacy will be preserved, but the query
will remain unanswered. If the scrambling degree is too low, then the final recall
will be high but the user privacy will be endangered.
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A formal criterion that can be used for privacy is k-anonymity [191] (see
Section 2.1.3.1), which demands that every piece of information about items in
a set be indistinguishably related to no fewer than k items. There are more
than one ways this concept can be used with the QSP. One is the approach
used in [57] to hide a term of the plain query within a group of k terms. As
noted earlier, the weakness of this approach is that in this case k is bounded
by a very small constant number. A more robust approach would be to achieve
k-anonymity or k-indistinguishability in the concept space of a search query.
The higher-level scrambled query should indistinguishably correspond to a large
number k of conceptually lower-level terms. This way, the real interest of the user
is hidden within a large field. This is our aim, and as we show in Section 8.5.2,
on average the QueryScrambler can accomplish this goal. However, there is still
work to be done. For example, there are particular cases where the semantic
generalization applied by the QueryScrambler may achieve k-anonymity only for
small values of k. This happens when a higher-level term corresponds only to
a small number of lower-level terms. We will further investigate this issue and
examine ways to overcome it, for example, by employing additional sources of
semantic information or extending our approach with statistical techniques.

8.5.2 Privacy of the QueryScrambler
The privacy goal of the QueryScrambler is to protect the actual interest of

a user who wants to submit a query to a search engine. We assume that the
user’s interest is expressed with the original query, thus, this query should not
be disclosed. We also assume that the ground-truth with respect to the retrieval
task is given with the results (in this work the top-50 items) of the search engine
for the original query. Consequently, these results should also be protected. In
summary, we define the following privacy requirements:

(A) The original user query should not be disclosed.

(B) The results of the original query must be protected.

A common way to examine the effectiveness of security or privacy measures
is to evaluate the system against a so-called adversary, who (in the QSP context)
represents the malicious entity whose aim is to violate the privacy of the user by
identifying his true search interest. What are the features of the adversary? If
an adversary can monitor all scrambled queries, then we expect that the privacy
of the plain query can be violated. However, as we discussed earlier, we can
encounter the possibility of such an attack; for example, the query scrambling can
be combined with other approaches like submitting individual queries via different
agents or through the Tor network etc. If the adversary captures only individual

167



8.5 Privacy Analysis

scrambled queries, then the privacy of the user depends on the minimum distance
between the scrambled queries and the plain query. A different attack is to use
the search results of a scrambled query to extract information about the interest.
As noted earlier, the QueryScrambler has the potential to generate scrambled
queries of low-enough precision and high-enough recall to unbrace such attacks.
We assume that an adversary

• knows that a particular scrambled query is actually scrambled,

• can capture any scrambled query but cannot link independent scrambled
queries to the same original query,

• can also capture the results that are returned by the search engine for any
particular scrambled query, and

• has no background knowledge about the original query.

Next, we consider the criterion of k-anonymity, or more appropriately in this
context, k-indistinguishability for the user’s interest as a plausible criterion for
the privacy goals of the QueryScrambler. An adversary should not be able to
come closer to the real interest of the user than a set of k possible interests.

Requirement A, is addressed with the query scrambling procedure described
in Section 8.2.4. In the experiments, each scrambled term can correspond to any
of each descendant nodes in the 2 or 3 lower levels of the Wordnet hierarchy.
In our query test-set there were on average about 319 distinct words in the two
lower levels. Any of these words could be the original query term that gave the
corresponding scrambled query term that was intercepted by the adversary. For
example, the original term ‘cortisone’1, gives the scrambled term ‘hormone’2 (in
this case a scrambled term three levels higher than the original term), and the
indistinguishability for cortisone is 1 out of 138, i.e., k = 138. For multi term
queries, indistinguishability increases multiplicatively with each additional query
term. Thus, on average, every original query is indistinguishably hidden within a
large number of possible terms.

An important issue is that, given a scrambled query, the corresponding candi-
date seed queries may not all be equally plausible. However, this non-uniformity
of the candidate seed query set does not mean that an adversary who is attacking
the system can with certainty exclude some of them. Let us consider the following
example: An adversary who is aware of the QueryScrambling approach intercepts
the scrambled query “manufacturer portable device”, and then calculates a cor-
responding (large) set of candidate seed queries. Assume that the queries “Nokia

1More precisely, “cortisone#n#1” in Wordnet, i.e., its 1st, most-frequent, sense as a noun.
2More precisely, “hormone#n#1” in Wordnet, i.e. its 1st, most-frequent, sense as a noun.

168



Chapter 8: Semantic Query Scrambling

tablet”1 and “Apple Tablet” both belong to this set. Can the adversary exclude
one of them, for example “Nokia tablet”? In our view, the fact that the query
about Apple is more likely does not necessarily mean that the user did not sub-
mit the other one. In fact, the less common candidate seed query can even be
more interesting, because it might reveal some interest about a less expected
topic. Concluding, despite the fact that some of the candidate seed queries may
be more likely than others, in most cases it should not be possible to signifi-
cantly reduce the set of candidate queries using this information. Combining this
with the large average number of candidate seed queries per scrambled query we
believe that indistinguishability holds for the QueryScrambler approach.

Requirement B, is addressed implicitly by keeping the recall and the precision
of each scrambled query low as discussed above. Even though the low precision
of the scrambled queries seems to be an unavoidable consequence of the query
scrambling procedure, it suits very well this requirement. In our experiments
we measured an average precision of 0.0053 (or 0.018 if we exclude scrambled
queries that completely failed, i.e., zero precision) at the top-1000 results. Even
if an adversary knew this average precision, the low precision makes the relevant
result item indistinguishable within the 1000 returned items. For example, if
there are 6 relevant items, then each item of the scrambled results is a real item
with probability 0.006 and even worse the correct set of the 6 relevant item
is indistinguishable from a total of C(1000, 6) ≃ 1.37 · 1015 combinations (here
subsets) of 1000 items taken 6 at a time. Of course, the remaining 994 items may
also convey some information about the user query but they do not belong to the
assumed ground-truth for the query.

In our view, the above arguments indicate that a good scrambled query can
force an adversary to examine a prohibitive large set of possible interests of the
user. Thus, on the one hand, we achieve the privacy goals. On the other hand,
the high level of privacy for several queries in our test-bed may also justify the
low retrieval effectiveness achieved. Concluding, further investigation is needed to
strike a better, more usable, balance between privacy and retrieval effectiveness.

8.6 Conclusions
We introduced a method for search privacy on the Internet, which is orthog-

onal to standard methods such as using anonymized connections, agents, obfus-
cating by random additional queries or added keywords, and other techniques
preventing private information leakage. The method enhances plausible denia-
bility against query-logs by employing semantically more general queries for the
intended information need. The key assumption is: the more general a concept is,

1At the time of the writing of this work, there was no Nokia tablet in the market.
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the less private information it conveys; an assumption deemed true by example.
We theoretically modelled the problem, providing a framework on which similar
approaches may be built in the future.

The current implementation is based on a semantic ontology without using
sophisticated natural language processing techniques or deep semantic analysis.
It is arguably a brute force approach focusing on investigating the practical fea-
sibility of the proposed method and the trade-off between quality of retrieved
results and privacy enhancement. The proposed scrambling method gets up to
25% of the top-50 target results, in the ceiling of its performance. Obviously,
there is a price to pay for privacy, i.e., a retrieval effectiveness loss. We inves-
tigated this trade-off in a system study; it should also be investigated in a user
study in order to determine the levels of trade-off users find acceptable. Overall,
the exercise demonstrated promising aspects and revealed important issues that
future research should tackle.

There seems to be room for improving the method of generating scrambled
queries. A thorough study of query transitions, from which one might be able to
take ideas for improving the scrambled queries, is in [26]. Also, knowledge of user
behavior [185] could help to improve such privacy protocols. Most importantly,
the failure analysis suggested that using semantic engines, as well as domain-
knowledge, would improve results. Another direction to pursue is the fusion of
loosely-related data such as results corresponding to queries targeting different
but related topics. This may have further extensions for meta-search, or ad hoc
retrieval via multiple queries. Also, it seems interesting to investigate the re-
trieval effectiveness on non-uniform collection samples such as samples obtained
via related queries. We have merely scratched the surface of a series of interest-
ing aspects which beyond enhancing privacy may also prove useful for improving
retrieval.

A complete scrambler-based system for privacy-preserving Internet search
could be as follows. The steps to obtain a set of scrambled queries for an original
user query can be executed locally at the user’s side. The scrambled queries can
then be submitted to search engines or any appropriate information providers.
This step should not reveal the IP of the user. Furthermore, the scrambled queries
should not be linkable with each other, thus, the interaction with search engines
should not leak any information that might link the scrambled queries. Existing
tools like Tor and OptimizedGoogle Search show how this can be done. Results are
de-scrambled locally. An important feature of the proposed method is that it can
be deployed in the current Internet; there are no requirements or assumptions on
current search engines and, moreover, there is no need for external trusted parties
or other external parties at all.
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Chapter 9

Statistical Query Scrambling for
Privacy-Enhanced Web Search

9.1 Introduction
In 2006, AOL released query-log data containing about 21 million web queries

collected from about 650,000 users over three months [158]. To protect user pri-
vacy, each real IP address had been replaced with a random ID. Soon after the
release, the first ‘anonymous’ user had been identified from the data [19]. In-
terestingly, this identification was made solely on the queries attributed to an
anonymous ID. Even though AOL withdrew the data a few days after the pri-
vacy breach, copies of the collection still circulate freely online. The incident only
substantiated what was already known: web search can pose serious threats on
the privacy of Internet users.

The incident has motivated lots of research in web-log anonymization and solu-
tions using anonymized or encrypted connections, agents, obfuscating by random
additional queries, and other techniques; for a extensive review on the literature,
we refer the reader to Chapter 8. There is an important reason why all the afore-
mentioned methods alone might be inadequate: in all cases, the query is revealed
in its clear form. Thus, such approaches would not hide the existence of the inter-
est at the search engine’s end or from any sites in the network path. In addition,
using anonymization tools or encryption, the plausible deniability towards the
existence of a private search task at the user’s end is weakened. In other words,
when a user employs the above technologies, the engine still knows that someone
is looking for “lawyers for victims of child rape”, and the user cannot deny that
he has a private search task which may be the aforementioned one.

A way to achieve plausible deniability was presented in Chapter 8, called query
scrambler, and works as follows. Given a private query, generate a set of scrambled
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queries corresponding loosely to the interest, thus blurring the true intentions of
the searcher. The set of scrambled queries is then submitted to an engine in or-
der to obtain a set of result-lists called scrambled rankings. Given the scrambled
rankings, it is attempted to reconstruct, at the searcher’s end, a ranking similar
to the one that the private query would have produced, called target ranking. The
process of reconstruction is called descrambling. The scrambler employed seman-
tically more general queries for the private query, by using WordNet’s ontology.
The key assumption was: the more general a concept is, the less private infor-
mation it conveys. Addressing privacy issues has the inherent difficulty to define
what privacy really means. Privacy is an elusive concept, encompassing different
things in different contexts and for different people [184].

The main contributions of this work are the following. In contrast to the
semantic framework used in previous work, we employ a purely statistical frame-
work [11]. Within this statistical framework, we define three comprehensive pri-
vacy objectives—including the equivalent of the privacy objective introduced in
Chapter 8. These objectives are used to define and quantify the privacy guaran-
tees for a given web search task. All statistics needed for generating scrambled
queries are estimated on a query-based document sample of the remote engine
[32]; consequently, the tools presented in this work are corpus-specific. Compared
to the semantic approach, the new proposed methods are found to be signifi-
cantly better in retrieval effectiveness, better defined, more versatile, predictably
behaved, applicable to a wider range of information needs, and the privacy they
provide is more comprehensible to the end-user.

9.2 A Statistical Approach to Query Scrambling
We assume an Internet user with an information need expressed as a query

for a public web search engine like Google, Bing or Baidu. The retrieval task we
focus on is document discovery, i.e. finding documents that fulfill the information
need of the user.

The Query Scrambling Problem (QSP) (defined in Chapter 8) for privacy-
preserving web search is defined as: Given a private query q for a web search,
it is requested to obtain the related web documents as if q had been submitted
to a search engine. To achieve this, it is allowed to interact with search engines,
but without revealing q; the query and the actual interest of the user must be
protected. The engines cannot be assumed to be collaborative with respect to
user privacy. Moreover, the amount of information disclosed in the process about
q should be kept as low as possible.

Given a private query q, we identify two types of privacy-sensitive resources:

• The q itself and the corresponding information need of the user. In this
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work, we use q and information need interchangeably.

• The document set matching q, given by a public search engine. An adver-
sary monitoring these results can extract significant information about the
information need.

We will define two privacy primitives for web-search. Let N be the size of the
document collection, Hq the set of documents matching q, and dfq = |Hq| the
document frequency of q. Finally, let dfw,q = |Hw ∩Hq|, for any query w and q.
Let us, for now, imagine that w and q are single-term queries, so Hw and Hq are
determined simply by the document sets their terms occur in; in Sections 9.3.1
and 9.3.2 we will see how we deal with multi-term queries.

A popular privacy primitive is k-anonymity [191] (see Section 2.1.3.1 for de-
tails), or k-indistinghuishability, which in the context of our work means that an
adversary should not be able to come closer than a set of k possible alternatives
to the private resource. Given q, for a candidate scrambled query w the first
primitive kw is

kw =
dfw
dfw,q

, (9.1)

a privacy measure between the two queries (each query can be single or multi-
term) based on the concept of k-indistinguishability of the results. Note, that kw
is the inverse precision of the retrieval results of w with respect to the results
of q. From a privacy perspective, submitting w instead of q, each of q’s target
documents is ‘hidden’ within at least kw − 1 other documents.

The second primitive gw is
gw =

dfw
N

, (9.2)

a measure of the generality of w. The rationale behind gw is that a general query
can be assumed to be less exposing. As an indication of how general a query is,
we use a pure statistical measure: The more documents of the collection a query
hits, the more general the query is.

Based on the above primitives we define the following privacy objectives and
present a use-case for each of them:

• Anything-But-This privacy or ABTk: Assume a researcher in academia or
industry who is working on some new application or product. The researcher
might be interested in searching about his new idea, but might hesitate to
submit a query in a clear form to a public search engine. Additionally, he
doesn’t care about what else will be revealed as long as it isn’t his true
interest. With ABTk the researcher can conduct a scrambled search where
each scrambled query satisfies kw > k.
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• Relative-Generalization privacy or RGr: A citizen might be looking for infor-
mation about some disease, but would not like to disclose the exact disease.
A scrambled search based on scrambled queries more general than q by a
factor of r might serve his need, while significantly reducing his privacy
risks. Formally, RGr means that every w must satisfy gw > r · gq.

• Absolute-Generalization privacy or AGg: Consider a citizen in some total-
itarian regime. The user might decide to scramble one or more sensitive
queries, for example about specific human rights, into queries with gener-
ality above a given user-specified threshold. In this case, every scrambled
query must satisfy gw > g.

These three privacy types may be combined, if such a privacy request arises.
We will not investigate such scenarios in this work. Note that the minimum RG
privacy (RG1) also assures the minimum ABT privacy (ABT1) but not the other
way around.

Clearly, in realistic settings, it is not be feasible to calculate the exact values of
the privacy measures defined above, since no one but the engine itself has access
to its full collection. However, we can resort to estimating the needed quantities
from a query-based document sample of the engine. We show in Section 9.3 how
to estimate their values from statistical information of the local document sample.

We can now model our query scrambling approach as a set covering prob-
lem [36]. More precisely, we define Scrambled Set Covering SSC(v, k, g), a multi-
objective extension of set covering. Given a finite universe U of all documents
of a collection, a partition of U into sets Hq and U − Hq, and a collection S of
subsets of U , the requirement is to find a subset C of S to satisfy the following
objectives and/or constraints:

• maximize (
∪

Hw∈C Hw)
∩
Hq, i.e., to maximize the coverage of Hq,

• |C| ≤ v, where v is the maximum number of scrambled queries,

• for each Hw ∈ C, the corresponding scrambled query w must satisfy kw > k,

• for each Hw ∈ C, the corresponding scrambled query w must satisfy gw > g.

For example, the SSC instance SSC(10, 2, 0.01) refers to query with 10 scrambled
queries, ABT2 and AG0.01. The same example with RG2 would be SSC(10, 2, 2 gq).

Let us give an overview of our approach for query scrambling. First, we obtain
a collection sample of size N with a query-based document sampling tool; this is
done offline, however, the sample should be updated often enough to correspond
to significant collection updates at the remote engine. In the online phase:
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1. A private query q is decomposed into a set of scrambled queries. The scram-
bled queries are chosen to satisfy the user-specified privacy objectives of Sec-
tion 9.2. To this end, we employ statistical information from the collection
sample.

2. The scrambled queries are submitted as independent searches and all results
are collected. To avoid a reverse engineering attack, the scrambled queries
should not be linkable to each other. The user should use Tor1 or other
anonymization tools for the submissions, taking care to assure unlinkability
between the scrambled queries.

3. The query q may be locally executed on the scrambled results (local re-
indexing), or the scrambled ranked-lists may be fused with some combina-
tion method.

The tool we propose is intended to be used in the following way: A user can
install it locally and then use it to scramble privacy-sensitive queries. It does not
rely on some trusted third party for the scrambling process.

9.3 Generating Scrambled Queries
For generating scrambled queries, we follow a statistical approach using a lo-

cal document sample of the remote search engine. So far, for simplicity, we have
assumed single-term private and scrambled queries. In Sections 9.3.1 and 9.3.2,
we will see how we can generalize the methods to work with multi-term queries.
As soon as we generate a set of candidate scrambled queries, these are filtered for
privacy according to the measures defined in Section 9.2. The remaining candi-
dates are ranked according to their expected retrieval effectiveness, described in
Section 9.3.3, before they are submitted.

9.3.1 Dealing with Multi-term Private Queries
If q is a single-term query, then its document frequency dfq can be determined

directly from the document sample. The question is how to treat a multi-term q,
or else, what the dfq of such a query is and which subset of dfq documents will
be assumed as matching q so we can harvest from it related terms to be used as
scrambled queries.

Given dfq, the question of which subset of documents is matching q can be
settled as: we rank the sample documents with respect to q using some best-match

1http://www.torproject.org
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retrieval model and ORed q, and take the top-dfq documents. We determine the
threshold dfq by submitting the ANDed q to the collection sample and count the
number of results, enforcing a minimum of 1 for practical reasons. We will refer
to this estimate of dfq as aDF. The maximum number of results an ANDed query
can retrieve is mini dfi when i is a term of the query; we will refer to such an
estimate of dfq as mDF. This happens when the query term with the least df is
100% positively correlated with all other query terms. The term with the least df
is also the most informative: if we were to reduce a multi-term q to a single term,
this is the term we would keep. In this respect, dfq cannot be larger than mDF
in any case.

While aDF may be too restrictive especially for a long q, mDF may be too
‘loose’ especially if q contains high frequency common terms. So, we will employ
both aDF and mDF for estimating dfq. From a retrieval perspective, it is easier
to create scrambled queries to retrieve smaller sets of documents, thus, using
aDF makes the task easier than using mDF. From a privacy perspective, mDF is
the largest df possible so it is safer. For example let us consider the information
need represented by the query “big bad wolf”. Using aDF will point to documents
about the “Little Red Riding Hood” fairy tale, while using mDF will point to all
documents referring to wolves including the fairy tale. Since aDF’s target set is
smaller, it can be easier retrieved by scrambled queries. But using mDF instead
corresponds to trying to hide all wolves.

9.3.2 Generating Multi-term Scrambled Queries
For single-term scrambled queries, dfw can be determined directly from the

document sample. However, we can also generate multi-word scrambled queries.
The question is how to treat these, or else, what the dfw of such a scrambled
query is and which subset of dfw sample documents will be assumed as occurring
in.

From the documents matching q, we enrich the set of candidate scrambled
single-term queries by using a sliding window of length W and generating all
unique unordered combinations of 2 and 3 terms. We use a window instead of
whole documents so as to limit the number of combinations; currently, we set
W = 16 which was shown in past literature to perform best in ensuring some
relatedness between terms [193] (see also Section 9.3.3). We limit the scrambled
query length to 3, which also helps to keep the number of combinations practically
manageable. In this procedure, we exclude all stopwords except those occurring
in q.

The document set hit by such a scrambled query is estimated similarly to
the method of aDF described in Section 9.3.1: The ORed scrambled query is
submitted to the sample and the top-dfw documents are considered matching,
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where dfw is the number of documents matching the ANDed scrambled query.
The choice of aDF over mDF is made purely on targeting the best privacy. aDF
produces lower dfw estimates than mDF, so these queries will be removed earlier
as g increases. Also, using aDF implies that queries are more targeted, achieving
higher precision, so they will be removed earlier as k increases.

9.3.3 Ranking Scrambled Queries
After dropping candidate scrambled queries that violate any privacy criteria

on kw and gw, the remaining queries should be ranked according to their expected
retrieval quality with respect to the document set matching the query, i.e. the
target set. For example, we can measure this quality in terms of precision and
recall, and combine those in one number such as the Fβ-measure [137]. Although
Fβ is suitable for our purpose, it has not been commonly used before for detecting
the best related terms.

Topically-related terms can be ranked via several methods; a common one
is by computing pointwise mutual information (PMI) using large co-occurrence
windows [30]. For the task at hand, it is appropriate to consider whole documents
as windows, and score each w co-occurring with q as

PMIw = log P (q, w)

P (q)P (w)
= logN dfq,w

dfq dfw
(9.3)

where P (q, w) is the probability of q and w co-occurring in a document, and P (q),
P (w), the probabilities of occurrence of q, w, in a document, respectively. Using a
large corpus and human-oriented tests, [193] did a comprehensive study of a dozen
word similarity measures and co-occurrence estimates. From all combinations of
estimates and measures, document retrieval with a maximum window of 16 words
and PMI (run tagged DR-PMI16) performed best on average.

Although PMI has been widely used in computational linguistics literature,
classification, and elsewhere, it has a major drawback in our task. Removing
constant factors from Eq. 9.3, which do not affect the relative ranking of terms
for a given q and collection, PMI ranks terms identically to the ratio: dfq,w/dfw.
Considering this ratio, an 1/1 term is ranked higher than a 9/10 term although
the latter is clearly a better term from a retrieval perspective leading to a better
recall; moreover, the former may be some accidental/spurious match. Or else, the
PMI of perfectly correlated terms is higher when the combination is less frequent.
This low-frequency bias may not undesirable for some tasks (e.g. collocation ex-
traction), but it is in our case due to our high precision and recall preference. A
workaround is instead to use a normalized version of PMI such as NPMI [27],
which divides PMI by − logP (q, w), reducing some of the low frequency bias but
not all. In any case, our task—while related—is not exactly a linguistic similarity
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one, where PMI works well in finding synonyms for TOEFL synonym tests [193],
or collocation identification, where NPMI works well [27].

Our task seems more related to scoring features for feature selection in classi-
fication. [226] review feature selection methods and their impact on classification
effectiveness. They find that PMI (which confusingly they refer to as just MI)
is not competitive with other methods, and that the best methods are the χ2-
statistic and the expected mutual information (MI) [137, Ch. 13.5.1, Eq. 13.17]
(which they refer to as information gain) with similar effectiveness. Still, our task
is different than a straightforward term selection for classification. In classifica-
tion, all selected terms are intended to be used simultaneously in order to classify
a new object. Here, we use selected terms as queries one by one in order to cover
the target set of documents. Beyond query volume, other parameters such as the
number of documents retrieved per related query and the cardinality of the target
document set may impact the effectiveness of the procedure.

All in all, since our task is different than determining linguistic similarity or
feature selection, it makes sense to evaluate again some common term similarity
measures and feature selection methods, as well as some uncommon ones, in this
context.

9.4 Evaluation
In order to evaluate the effectiveness of the scrambler and how its retrieval

quality trades off with scrambled query volume (v) and scrambling intensity (k
or g) over the different privacy types (ABT/RG/AG) and methods (aDF/mDF),
we set up an offline experiment. For comparison purposes, we re-constructed the
set-up that was presented in Chapter 8 as close as possible.

9.4.1 Datasets, Tools and Methods
The private query dataset is available online1 and consists of 95 queries se-

lected independently by four human subjects from various query-logs (the same
with the Chapter 8). As a document collection, we used the ClueWeb09_B dataset
consisting of the first 50 million English pages of the ClueWeb09 dataset2. The
dataset was indexed with the Lemur Toolkit, Indri V5.2, using the default set-
tings, except that we enabled the Krovetz stemmer3. We used the baseline lan-
guage model for retrieval, also with the default smoothing rules and parameters.
This index and retrieval model simulate the remote web search engine.

1http://lethe.nonrelevant.net/datasets/95-seed-queries-v1.0.txt
2http://boston.lti.cs.cmu.edu/Data/clueweb09/
3http://www.lemurproject.org
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We took a document sample of the remote collection using random queries
similarly to [32]. We bootstrapped the procedure with the initial query “www”.
At each step, the procedure retrieves the first K results of the random query
and adds them to the sample; we set K = 1. Previous research has shown that
the choice of the initial query is not important and that K = 1 is best suited
for heterogeneous collections such as the web. Then, a term is uniformly selected
from the unique terms of the current sample and used as the next random query
until the desired sample size is reached. Candidate terms are at least 3 characters
long and cannot be numbers. After initial experiments we decided to use a sample
of 5,000 documents which provides a good compromise between effectiveness and
practical feasibility (as well as speed). We used the same types of indexing and
retrieval model for the sample as for the remote engine.

In initial experiments we compared PMI, NPMI, MI, F1, F2 and centroid
weight, and found that MI and centroid weight work best for the task of ranking
scrambled queries. Fβ with β = 2, i.e. weighing recall twice to precision, is slightly
behind but competitive; the F-measure however requires an extra parameter (β).
NPMI works better than PMI, but both are left quite behind. We will not present
these results for space reasons, and will stick with MI.

We targeted the top-50 documents of the remote engine. Our local sample
(5,000 documents) was so small in relation to the engine’s collection that all
target documents corresponded to less than 1 document in the sample. In this
respect, in order to improve the focus of the scrambled queries, it makes sense
to harvest those from a set of sample documents of a smaller cardinality than
dfq. In initial experiments we found that a good compromise between focus and
reasonably good statistics of document frequencies is to take the top-df′q sample
documents returned by q, where df′q = min(10, dfq), i.e. we harvested scrambled
queries from the at most top-10 sample documents. Also, we adjusted df′w and
df′q,w to the new set and calculated MI using these numbers instead; this was
found to improve retrieval effectiveness. Of course, the privacy constraints were
applied to the unmodified frequencies as described in Section 9.2.

Concerning the evaluation measures, we simplified the matters in relation to
Chapter 8 where scrambled rankings were fused via several combination meth-
ods and the fused ranking was evaluated against the target one via Kendall’s τ
and a set intersection metric. The fusion methods tried in the previous study
were deemed weak in comparison to a local re-indexing approach, i.e. index lo-
cally the union of top-1000 documents retrieved by all scrambled queries and
run the private query against the local index in order to re-construct the tar-
get ranking. Nevertheless, even with local re-indexing the ceiling of achievable
performance was not reached: there were quite a few target documents retrieved
by scrambled queries that could not be locally ranked in the top-50. This was
attributed to having biased DF statistics in the local index. The experimental
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unfiltered k = 1 k = 2 k = 4 k = 8 k = 16
v aDF mDF aDF mDF aDF mDF aDF mDF aDF mDF aDF mDF
2 30.1 34.2 28.6 30.3 19.9 12.1 11.8 5.05 7.49 2.02 3.57 1.13
10 36.2 39.6 35.3 37.5 30.9 23.6 22.8 11.2 15.6 5.13 8.33 2.41
50 40.8 44.2 40.2 42.5 37.3 33.1 31.8 19.3 23.7 10.8 14.2 5.25

Table 9.1: ABT privacy, top-50 target documents found by the top-v scrambled
queries.

effort in the aforementioned study concluded with a bare experiment evaluating
only the number of target top-50 documents found by the union of the top-1000
documents retrieved by all scrambled queries. This allowed to remove the effect
of de-scrambling and evaluate only the quality of scrambling; this is what we will
also do.

9.4.2 Results
The two left-most columns of Table 9.1, marked as ‘unfiltered’, show results

with no privacy; these can be considered as the ceiling of achievable performance
when de-composing a user query q with the current methods. Even with no pri-
vacy, we do not get 50 out of 50 target documents because there are cases where
we cannot exactly reproduce q from the sample for the following reasons. First, a
term of q may not occur in the sample, e.g. ‘chamblee’ from “definition of cham-
blee cancer”. However, such a term may occur in the remote collection. Second,
the terms of a multi-term q, e.g. ‘definition’, ‘chamblee’, and ‘cancer’, may not
occur within a window of 16 terms in sample documents. Third, we generate
scrambled queries only up to 3 terms. All these already suggest future improve-
ments: use larger samples, use larger or no windows at all but whole documents,
and generate longer scrambled queries.

Table 9.1 also shows results for ABT privacy. The minimum privacy (k = 1)
removes only scrambled queries which occur in all documents of the sample target
set. This has a larger impact to a single-term q which may loose its 50 out 50
effectiveness. The table also shows that for light or no privacy requirements mDF
works better than aDF; this happens because the sample target set of mDF is
larger than this of aDF, so more scrambled queries are harvested/generated lead-
ing to better results. However, the effectiveness of mDF degrades faster than aDF
as k increases, so aDF works better, as expected and explained in Section 9.3.1.
For large k (e.g. for k ≥ 2), the effectiveness of mDF roughly halves for every
doubling of k, suggesting a linear relation in log-log space or a power-law.

Tables 9.2 and 9.3 show results for RG and AG privacy respectively. Using
mDF, RG effectiveness roughly halves for every doubling of generalization, sug-
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g = gq g = 2 gq g = 4 gq g = 8 gq
v aDF mDF aDF mDF aDF mDF aDF mDF
2 22.1 13.5 19.9 8.17 12.6 4.33 7.35 1.65
10 31.1 21.2 31.4 12.6 22.1 6.83 13.3 3.42
50 38.3 28.6 36.1 19.2 28.9 10.3 20.1 6.28

Table 9.2: Top-50 target documents with RG privacy.

g = .0064 g = .0128 g = .0256 g = .0512
v aDF mDF aDF mDF aDF mDF aDF mDF
2 13.7 5.22 13.5 6.82 9.29 5.40 7.80 4.83
10 21.2 11.4 21.8 11.8 15.9 12.3 11.7 7.79
50 28.0 17.1 26.5 19.0 23.1 18.0 16.0 11.4
#q 69 27 82 44 87 63 94 81

Table 9.3: Top-50 target documents with AG privacy.

gesting again a power-law. Concerning AG privacy, the g values shown correspond
to document frequency cut-offs of 64, 128, 256 and 512 in the current sample size.
If a private query is already general enough for a g value, it is not scrambled since
it has no privacy issues. Such queries are excluded from the average results of the
right table. The numbers of private queries scrambled per g value and choice of
aDF/mDF are shown in the last row (#q). The effectiveness of mDF is similar
for the first three small g cut-offs but then falls off. In other words, we can gen-
eralize private queries relatively well by using scrambled queries hitting up to
2.5% sample documents. At such an AG level, 66% (63 out of 95) of the private
query dataset is deemed as not general enough so it is scrambled. Again, the aDF
method is much better than mDF in all cases, providing a less steep decrease in
effectiveness as generalization increases.

The fact that aDF is more effective than mDF in all privacy types when more
than light privacy is required, does not mean that it should be the preferred
method. As we noted in Section 9.3.1, mDF represents stricter privacy than aDF
which is experimentally proved to trade off with retrieval effectiveness. The final
choice between aDF/mDF should be left to the end-user or determined via a
user-study.

Concerning scrambled query volume, in all privacy types and methods ef-
fectiveness increases with higher volumes. However, due to the nature of the
experimental setup, we see diminishing returns as effectiveness gets closer to 50
documents. At high privacy levels where effectiveness suffers, we can see roughly a
doubling of effectiveness for every fivefold increase in volume, i.e. another power-
law albeit a very steep one suggesting that a few dozens of scrambled queries are
enough.
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9.4.3 A Comparison to Semantic Query Scrambling
The previous work (Chapter 8) dealt only with RG privacy, so we will compare

our RG method and results to it. The best effectiveness reported in Chapter 8 is
12.7, obtained at low volume (i.e. as many scrambled queries as can be produced
up to 10) and low scrambling by averaging the results for 94 of the 95 user
queries. One query did not produce any scrambled queries at low scrambling. At
higher volume, ironically, effectiveness slightly decreased, an effect we attribute to
averaging only the 55 user queries having numbers of low-scrambled queries in the
26–50 range. Effectiveness decreased fast—below 10 and even 5 documents—at
medium or high scrambling.

The most obvious problems of the semantic approach are the following. First,
not all user queries can be scrambled at a requested scrambling intensity, due to
WordNet’s ontology being generic thus not ‘dense’ enough. The problem seems
severe: at high scrambling, only 58 out of the 95 user queries had at least 1
scrambled query. Second, the levels of low/medium/high scrambling were defined
by taking arbitrary ranges of values of some semantic similarity measure between
each scrambled query and q. Thus, scrambling intensity is difficult to be explained
to the end-user: how much exposing is a scrambled query with, say, 0.8 similarity
to q?

The statistical approach does not have the problems of the semantic. First, we
always seem to produce enough scrambled queries. This may not be the case for
very small document samples, but it does hold for our—reasonably small—5,000
sample. Second, our approach to RG can easier be explained to the end-user: the
information need expressed by a scrambled query is satisfied by at least X times
more documents than his private query. This can give him a better idea on how
much he is exposed, in contrast to giving him a raw similarity threshold as in the
semantic approach.

Moreover, we seem to get much better effectiveness. Although the two ap-
proaches are not directly comparable due to the weak definitions of low/medi-
um/high scrambling of the semantic approach, comparing the methods at min-
imum scrambling (i.e. low scrambling vs. g = gq) at volume 10 we see improve-
ments of +145% or +67% (12.7 vs. 31.1 with aDF or 21.2 with mDF). Neverthe-
less, we should investigate which levels of privacy are roughly comparable across
the two approaches.

Let us attempt a comparison of RG at the minimum level, as well as, at
levels of the statistical approach which result to around 12.7 target documents
on average for volume 10, according to Table 9.2. For the user query “gun racks”,
Table 9.4 compares the scrambled queries resulting from the semantic approach
(the two left-most columns of Table 9.4 are taken from the Table 8.2 appearing in
Chapter 8) against the scrambled queries of the statistical approach. The semantic
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low scrambling medium scrambling mDF, g = gq mDF, g = 2gq aDF, g = 8gq
weapon system support device support light replacement air power air power

weapon support instrument device gun light 39 light power light power
arm support weapon system instrumentation air book cover weight weight

instrument support weapon system instrumentality electric light machine accessory accessory
weapon system device weapon instrumentation pull machine power machine power

weapon device weapon instrumentality air kit light supply light model
arm device arm instrumentation air cover 22 light fire light

— arm instrumentality air gun home 3 cover picture gun 40
— device device light pump light model trailer
— instrument instrumentation brake fire light air picture
0 0 39 0 40

Table 9.4: Top-10 RG scrambled queries for private query ‘gun racks’ and # of
target docs found.

approach is capable of generating only 7 scrambled queries at low scrambling but
10 at medium scrambling. None of the scrambled queries hit any of the target
documents at any scrambling intensity. A bold number next to a query is the
number of target results hit (if any), while the last row shows the number of
distinct target results hit by all scrambled queries per column. The statistical
approach achieves good results (above the 12.7 average) in two out of three cases.
Nevertheless, it seems difficult to decide where the methods stand privacy-wise: is
“weapon support” less exposing than “gun light” or just “gun”? In our opinion,
the user should have the last word on this by reviewing the set of scrambled
queries before submission.

All in all, using the strictest privacy provided by mDF, we roughly matched or
improved the best retrieval result of the semantic approach, for k up to 4 and g up
to 2gq or 2.5% at volume 10, and for k up to 8 and g up to 4gq or 5% at volume 50.
At lighter privacy requirements, we outperformed the semantic approach by far.
In all cases, our methods managed to scramble all private queries where this was
needed, in contrast to the semantic approach. Moreover, we detected power-law
relations between the privacy levels and retrieval effectiveness of ABT and AG, as
well as, between volume and retrieval effectiveness. Thus, our methods are more
well-defined and easier explained to the end-user, can be applied to a wider-range
of private information needs, are more effective and behave predictably, retrieval-
wise.

Last, there are two other advantages of the statistical approach over the se-
mantic one. First, in the semantic approach the user had to manually select the
part-of-speech and sense of every term in his query in order to select the right
node in WordNet’s ontology. The statistical approach does not require these time-
consuming steps. Second, the semantic approach arrived at the conclusion that
the best method to de-scramble ranked-lists is to locally re-index the union of
documents hit by all scrambled queries and run q against this local index. Never-
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theless, even with local re-indexing the ceiling of achievable performance was not
reached: there were quite a few target documents retrieved by scrambled queries
that could not be locally ranked in the top-50. This was attributed to having
biased DF statistics in the local index due to the fact that the local documents
represented a far from uniform collection sample: they were all retrieved by a
set of semantically-related scrambled queries. The document sample used by the
statistical approach is more representative of the remote collection, so its DF
statistics can be used in the local re-indexing approach removing most of the
bias.

9.5 Conclusion
We introduced a method for search privacy on the Internet, which is or-

thogonal to—and should be combined with—standard methods such as using
anonymized connections, agents, obfuscating by random additional queries or
added keywords, and other techniques reducing private information leakage. The
method enhances plausible deniability towards query-logs by employing alterna-
tive less-exposing queries for a private query. We defined and modeled theoreti-
cally three types of privacy, providing a framework on which similar approaches
may be built in the future.

In contrast to previous work (Chapter 8), we followed a statistical approach
which does not use word/concept ontologies, semantic analysis or natural lan-
guage processing. We investigated the practical feasibility of the proposed method
and the trade-off between quality of retrieved results and privacy enhancement.
In the semantic approach, the best result was 25% of the top-50 target documents
found, and was achieved at the lightest possible privacy requirements; our new
method can match this at higher-than-minimum privacy levels and for more and
better-defined privacy types which can easier be explained to the end-user. At our
lightest privacy level, our new method outperforms the semantic one by far; we
retrieve up to 56–76% of the target results. Moreover, the proposed method can
be applied to a wider range of information needs and performs more predictably
retrieval-wise.

Privacy is an elusive concept. While it is easy to evaluate the retrieval effec-
tiveness of our methods, it is difficult to evaluate the actual privacy perceived by
the end users. We investigated our approach in a system-study; it should also be
investigated in a user-study in order to determine the levels of privacy trade-offs
users find acceptable.
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Conclusion

In this thesis, we proposed the usage of ubiquitous personal data from sensors,
mobile devices or other resources in order to create beneficial services/applica-
tions for society. The proposed (four) applications utilize the personal data of
users while ensuring their privacy. The protection of privacy is achieved using
cryptographic techniques and protocols that perform privacy-preserving compu-
tations in communities of personal software agents. Additionally, the implemen-
tation of such applications confirmed that is feasible to make use of and, at the
same time, to protect the personal data of individuals, and do so in an efficient
way. More specifically, the conclusions for each one of these four applications are:

• In the Nearest Doctor Problem (NDP) (Chapter 4), we proposed the use of
the current location of each doctor for supporting services (finding the near-
est doctor in an emergency) for public well-being. In our view, the NDP
solution for offering help in case of an emergency should be considered
complementary to existing emergency handling services. The NDP solu-
tion would probably make a difference only in some cases of emergencies.
However, even a small number of successful applications of NDP, justifies,
at least in our view, the approach. An interesting extension of the NDP
problem would be to require the location of the emergency to be private as
well.

• In the privacy-preserving statistical analysis (Chapter 5), we presented an
architecture for a privacy-enhanced Ubiquitous Health Monitoring System
(UHMS) and proposed the use of the ubiquitous health data that are ob-
tained by the wearable sensors in a UHMS for carrying out statistical re-
search. To this end, we described how representative statistical functions
can be executed in a distributed and privacy-preserving way. Moreover, the
proposed solution offered insights into how we can calculate other more
complex statistical functions, such as the polynomial regression and so on.
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• In NoiseTubePrime (Chapter 6), we presented a novel, privacy-preserving
architecture for the creation of participatory noise maps and on top of
the NoiseTube system [136]. The proposed distributed computation is per-
formed on encrypted data that is located in the cloud and is kept by per-
sonal software agents. Our future plans are to develop a stable and more
complete version of NoiseTubePrime and demonstrate its use for real-world
campaigns, also extending the platform towards more statistical parame-
ters. Also, a user study could be set up to evaluate the overall usability of
the solution in different contexts.

• In PrivTAM (Chapter 7), we designed an efficient protocol for privacy-
preserving television audience measurements and tested the applicability
of the proposed solution. The produced results are achieved without using
any specialized equipment (only Smart TVs) and can take into account data
from multiple broadcast sources. A future direction for the improvement of
our solution could be to investigate if it is possible to have a decentralized
architecture, like a peer-to-peer topology, where the TV agents would be
self-organized and they can independently calculate and prove the correct-
ness of the TAM results.

Additionally, we presented two methods (Chapter 8 and 9) for the protec-
tion of web searches on the Internet against search engine query-logs. The first
method enhances plausible deniability against query-logs by employing semanti-
cally more general queries for the intended information need and the second one
by employing alternative, statistically less-exposing queries. Compared to the se-
mantic approach, the statistical approach is found to be significantly better in
retrieval effectiveness, better defined, more versatile, predictably behaved, appli-
cable to a wider range of information needs, and the privacy provided is more
comprehensible to the end-user. While it is easy to evaluate the retrieval effec-
tiveness of our methods, it is difficult to evaluate the actual privacy perceived
by the end users. We investigated our approaches in a system-study; they could
also be investigated in a user-study in order to determine the levels of privacy
trade-offs users find acceptable.

Overall, this work is mostly based on a theoretical approach and confirmed
with experimental results of the prototype implementations. For this reason, a
more thorough evaluation of our approach would be useful, such as case studies
in small or large scale. Furthermore, it would be appealing to investigate other
innovative applications, that can be used in every day life, with emphasis on users’
privacy, where personal data is kept on user’s side. Today’s data management
technologies give the opportunity for users to control and protect their personal
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data in platforms such as OwnCloud1 and TonidoPlug2. Finally, this thesis gave
the general directions for future research in the area of personal data privacy
which will continue to be a challenge in new information technologies.

1www.owncloud.org
2www.tonidoplug.com
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