Extracting Intention from Web Queries – Application in eHealth Personalization

George Drosatos Avi Arampatzis and Eleni Kaldoudi

School of Medicine
Dept. of Electric and Computer Engineering
Democritus University of Thrace

Personalized e-Health System

CARRE Project

- It is a EU funded project in the area of cardiorenal with focus to provide personalized health
- Personal data: Sensor data (e.g. activity and blood pressure), PHR and patient's intentions (travel, diet, diseases, etc)

Investigation of Patient's Online Interaction

- Capture Personal Information
 - Goal: Detect intentions
- Possible Sources:
 - Social Media: Facebook, Twitter, etc.
 - Browsing History
 - Web Searches
- First choice: Web searches to extract intentions
 - Good source to reveal user's interests and intentions
 - Web search engines are one of the most popular uses of the web, e.g.
 - >70% of internet users report looking online for health information

*The Pew Research Center. (2013) Health Online 2013. http://www.pewinternet.org/2013/01/15/health-online-2013/

Privacy & Legislation

- What is privacy?
 - "The right to be let alone" [Warren and Brandeis, 1890]
 - "The right of the individual to decide what information about himself should be communicated to others and under what circumstances" [Westin, 1970]
 - The right to informational self-determination [1983]
- Personal Data: Any information that refers to a person
- Related Legislation: e.g. EU Data Protection Directive 95/46/EC
 - Indicative principles:
 - Reported and transparent processing
 - Finality & Purpose Limitation
 - Personal data quality
 - Security
 - Personal data traffic outside EU

Privacy-friendly Architecture

main principle: preserve the patients' privacy

Extract Users Intentions via Query Classification*

- (1) Offline, initialization process
 - predefine query categories (~250)
 - create index of documents = the collection of top most related documents to each category from a set representative of the entire web (ClueWeb 09_b)
- (2) Real-time repetitive process
 - run user query in the index
 - based on the results, associate user query with predefined categories

privacy preserving: step #2 process is performed on user-side

*Agrawal R., Yu X et al., Neural Information Proc., Springer, 7064 of LNCS, pp 148-157, 2011

Our Implementations

(Open Source)

- Query Detector as a browser extension
 - Firefox <
 - Chrome
- User Intention Extractor as a Java application
 - Platform independent

Our Implementations

(Open Source)

- Query Detector as a browser extension
 - Firefox
 - Chrome
- User Intention Extractor as a Java application
 - Platform independent

Our Implementations

(Open Source)

- Query Detector as a browser extension
 - Firefox
 - Chrome
- User Intention Extractor as a Java application
 - Platform independent <

Example of Detected Intentions

Conclusions, Current & Future Work

Conclusions

- Provide a proof of concept
- Apply a privacy by design approach in our methodology

Work in Progress

- Improve the technique of query classification
- Determine the safe detected intentions based on classification technique (without a fixed limit, e.g. n=3)
- Perform a user study in the side of patients in order to determine the correctness of intentions

Future Work

- Detect intentions from other online activities (e.g. social media) of patient
- Investigate how to utilize the intentions in a Decision Support System (DSS)

Thank you!

- Slides & Reprints: http://www.drosatos.info
- Online Demonstration: http://youtu.be/IMHIIbwcDRY
- You can find binaries and source codes at:

https://www.carre-project.eu/innovation/web-lifestyle-data-aggregator/

Acknowledgement

This work was supported by the FP7-ICT project CARRE (No. **611140**), funded in part by the **European Commission**.

CARRE Project: Personalized patient empowerment and shared decision support for cardiorenal disease and comorbidities.